1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
3 years ago
5

In a student government election, 6 seniors, 2 juniors, and 3 sophomores are running for election. Students elect four at-large

senators. In how many ways can this be done?
Mathematics
2 answers:
Dmitrij [34]3 years ago
5 0

Answer:

330 ways.

Step-by-step explanation:

4 senators of 11 people should be selected, that is a combination of the C(n,r) form, where

n = 11

r = 4

That's C(11,4)

The combinations form uses factorial numbers. This is the formula:  

C(n,r)=\frac{n!}{(n-r)! r!}

Substituting the variables for their respective data, we have

C(11,4)=\frac{11!}{(11-4)! 4!}

C(11,4)=\frac{11.10.9.8.7!}{7! 4!}

C(11,4)=\frac{11.10.9.8}{4!}

C(11,4)=\frac{11.10.9.8}{4.3.2}

C(11,4)=\frac{7920}{24}

C(11,4)=330

Students can elect four at-large senators of 330 ways.

Hope this helps!

Harrizon [31]3 years ago
3 0
4-0-0
2-1-1
1-2-1
1-0-3
0-1-3


Those are just the ones I can think of so about 5 ways
You might be interested in
What is the square root of 12
Viktor [21]
12 is not a perfect square, but 4, a factor of 12, is a perfect square.  Thus, separate the problem

sqrt(12) into factors as follows:

sqrt(12) = sqrt(4)*sqrt(2)    = 2*sqrt(2)  (answer)
6 0
3 years ago
Una lancha que viaja a 10 m/s pasa por debajo de un puente 3 segundos después que ha pasado un bote que viaja a 7 m/s, ¿después
ExtremeBDS [4]

Answer:

La lancha y el bote se encontrarán a 70 metros de distancia del puente.

Step-by-step explanation:

Sea el punto debajo del puente el punto de referencia y que ambas lanchas se desplazan a velocidad a continuación, las ecuaciones cinemáticas para cada embarcación son presentadas a continuación:

Bote a 7 metros por segundo

x_{A} = x_{o}+v_{A}\cdot t (Ec. 1)

Lancha a 10 metros por segundo

x_{B} = x_{o}+v_{B}\cdot (t-3\,s) (Ec. 2)

Donde:

x_{o} - Posición debajo del puente, medido en metros.

x_{A}, x_{B} - Posición final de cada embarcación, medido en metros.

v_{A}, v_{B} - Velocidad de cada embarcación, medida en metros por segundo.

t - Tiempo, medido en segundos.

Para determinar la posición en la que ambas embarcaciones se encuentran, se debe determinar el instante en que ocurre a partir de la siguiente condición: x_{A} = x_{B}

Igualando (Ec. 1) y (Ec. 2) se tiene que:

v_{A}\cdot t = v_{B}\cdot (t-3\,s)

Ahora despejamos el tiempo:

3\cdot v_{B} = (v_{B}-v_{A})\cdot t

t = \frac{3\cdot v_{B}}{v_{B}-v_{A}}

Si sabemos que v_{B} = 10\,\frac{m}{s} y v_{A} = 7\,\frac{m}{s}, entonces:

t = \frac{3\cdot \left(10\,\frac{m}{s} \right)}{10\,\frac{m}{s}-7\,\frac{m}{s}}

t = 10\,s

Ahora, la posición de encuentro es: (x_{o} = 0\,m, v_{A} = 7\,\frac{m}{s} y t = 10\,s)

x_{A} = 0\,m + \left(7\,\frac{m}{s} \right)\cdot (10\,s)

x_{A} = 70\,m

La lancha y el bote se encontrarán a 70 metros de distancia del puente.

6 0
3 years ago
add 7. double the result. subtract 8. divide by 2. su tract the orginial selected number 1st nuber is 3 second number is 4 the t
sertanlavr [38]
Hi,


The equation looks like this...

n + 7 \times 2 - 8 \div 2 \\ 3 + 7 \times 2 - 8 \div 2 = 3 + 14 - 4 = 13 \\ 4 + 7 \times 2 - 8 \div 2 = 4 + 14 - 4 = 14 \\ 9 + 7 \times 2 - 8 \div 2 = 9 + 14 - 4 = 19 \\ 12 + 7 \times 2 - 8 \div 2 = 12 + 14 - 4 = 22

Hope this helps.
r3t40
8 0
3 years ago
a grandmother deposits $6000 in an account that pays 9% compounded monthly. What will be the value of the account at the​ child'
valkas [14]

now, we're assuming she made the deposit at the child's birth, namely when year was 0, at the child's twenty-first birthday that'll be 21 years later.

~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$6000\\ r=rate\to 9\%\to \frac{9}{100}\dotfill &0.09\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, thus twelve} \end{array}\dotfill &12\\ t=years\dotfill &21 \end{cases} \\\\\\ A=6000\left(1+\frac{0.09}{12}\right)^{12\cdot 21}\implies A=6000(1.0075)^{252}\implies A\approx 39437.11

8 0
2 years ago
Angus Cut His Neighbors' Lawns For The Summer. By The End, He Had $325 In His Lawn-cutting Bank Account And He Paid A Total $75
rodikova [14]

Answer:

C. N = 400 / 10

Step-by-step explanation:

Lawn-cutting Bank Account = $325

Amount paid for gas = $75

Total amount earned = Lawn-cutting Bank Account + Amount paid for gas

= $325 + $75

= $400

Amount earned per every lawn he mowed = $10

How Many Lawns Did He mow?

Let N = number of lawns he mowed

N = Total amount earned / Amount earned per every lawn he mowed

N = 400 / 10

N = 40 lawns

5 0
3 years ago
Other questions:
  • Bob rolls a fair six-sided die each morning. If Bob rolls a composite number, he eats sweetened cereal. If he rolls a prime numb
    13·1 answer
  • What is 975 times 65
    10·1 answer
  • A rectangle measures 10ft 10in. tall and 2ft 11 in wide. what is the area of the rectangle?
    12·1 answer
  • This is my last question
    10·2 answers
  • during the summer each student got 5% taller erik is 151.2 cm taller after the summer how tall was be before the summer?
    15·2 answers
  • A line passes through the origin and has a slope of 4. What is the equation of the line that is parallel to the first line and p
    9·1 answer
  • Mustafa is flying his kite, and Ana is watching from 20 m away, as shown. From Ana's perspective there is an
    8·2 answers
  • A car rental company charges an initial fee plus a constant fee per kilometer driven.
    13·1 answer
  • Please help me with this problem will give branlyiest.
    10·1 answer
  • What is the value of f(x) when x = -1<br> f(x) = 2* + 5
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!