Not sure about the first one,
The second one is 1/9.
Problem A
Usually the number of bits in a byte is 8 or 16 or 32 and recently 64. You don't have to write a formula to restrict it to this number of bits. You are not asked to do so. The general formula is 2^n - 1 for the problem of Millie and her golden keys. Somehow the system can be made to choose the right number of bits. Apple IIe s for example, used 8 bits and there was a location that told the processor that fact.
2^n - 1 <<<<< Answer
Problem B
In this case n = 4
2^n - 1 = 2^4 - 1 = 16 - 1 = 15
Millie can collect 15 keys <<<<<< Answer
I think is should be (5,0)
30,000 shirts for the men and 17,000 shirts for the women
Answers:
===================================================
Explanation:
Part (a)
Lines LN and PN have the point N in common. This is the intersection point.
-----------------
Part (b)
To name a plane, pick any three non-collinear points that are inside it. We cannot pick points H, J, K together because infinitely many planes pass through it. Imagine the piece of flat paper able to rotate around this axis (like a propeller). Having the points not all on the same line guarantees we form exactly one unique plane.
I'll pick the non-collinear points P, H and J to get the name Plane PHJ. Other answers are possible.
------------------
Part (c)
Points H, J and K are collinear as they are on the same line. Pick either H or K to fill out the answer box. I'll go with point K
------------------
Part (d)
Point P and line HK are coplanar. They exist in the same flat plane, or on the same sheet of flat paper together.
We can think of that flat plane as the ground level while something like point N is underground somewhere. So point N and anything on that ground plane wouldn't be coplanar.
Note: there are other possible names for line HK such as line JH or line JK. The order doesn't matter when it comes to naming lines.