Given:
4log1/2^w (2log1/2^u-3log1/2^v)
Req'd:
Single logarithm = ?
Sol'n:
First remove the parenthesis,
4 log 1/2 (w) + 2 log 1/2 (u) - 3 log 1/2 (v)
Simplify each term,
Simplify the 4 log 1/2 (w) by moving the constant 4 inside the logarithm;
Simplify the 2 log 1/2 (u) by moving the constant 2 inside the logarithm;
Simplify the -3 log 1/2 (v) by moving the constant -3 inside the logarithm:
log 1/2 (w^4) + 2 log 1/2 (u) - 3 log 1/2 (v)
log 1/2 (w^4) + log 1/2 (u^2) - log 1/2 (v^3)
We have to use the product property of logarithms which is log of b (x) + log of b (y) = log of b (xy):
Thus,
Log of 1/2 (w^4 u^2) - log of 1/2 (v^3)
then use the quotient property of logarithms which is log of b (x) - log of b (y) = log of b (x/y)
Therefore,
log of 1/2 (w^4 u^2 / v^3)
and for the final step and answer, reorder or rearrange w^4 and u^2:
log of 1/2 (u^2 w^4 / v^3)
Answer:
x≤-2
Step-by-step explanation:
it would be that because if the graph is going to the left that means it is less than x and the opposite is for greater than. Now if there is a closed circle that means the sign is equal to hence the line under the sign. So therefore it's x≤-2
Y=2x-3 rise over run and then the y intercept
First, we are going to find the vertex of our quadratic. Remember that to find the vertex

of a quadratic equation of the form

, we use the vertex formula

, and then, we evaluate our equation at

to find

.
We now from our quadratic that

and

, so lets use our formula:




Now we can evaluate our quadratic at 8 to find

:




So the vertex of our function is (8,-72)
Next, we are going to use the vertex to rewrite our quadratic equation:



The x-coordinate of the minimum will be the x-coordinate of the vertex; in other words: 8.
We can conclude that:
The rewritten equation is

The x-coordinate of the minimum is 8
Answer:
c
Step-by-step explanation: