1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
2 years ago
9

Kiara desea contratar el servicio de una línea telefónica con internet para realizar sus clases virtuales. Si el costo de una lí

nea de telefonía móvil con Internet es C = 10 + 1,5t (C, en soles; t, en horas).
- Expresa el costo de la línea telefónica móvil en función del tiempo.
- Determina el dominio y el rango de una función.
- ¿Cuál será el costo luego de 48 horas de consumo de la línea telefónica con Internet?

Doy coronita

Mathematics
1 answer:
ArbitrLikvidat [17]2 years ago
7 0

a) Kiara ha adquirido una línea de telefonía móvil con internet a un Coste Fijo de 10 soles y un Tasa de Consumo de 1,5 soles por hora consumida.

b) El Coste total por 48 horas de consumo de la línea telefónica con internet es 82 soles.

a) Nota - Puesto que la ecuación que describe el Coste ya existe en el enunciado, entonces se entiende el verbo <em>"Expresa"</em> como <em>"Describa en sus propias palabras"</em>.

Como puede apreciarse el Coste de la línea telefónica móvil aumenta linealmente con el Tiempo de consumo por parte del usuario. En consecuencia, la función de Coste queda definida como sigue:

C(t) = C_{o} + r\cdot t (1)

Donde:

  • C_{o} - Coste fijo, en soles.
  • r - Tasa de consumo, en soles por hora.

Entonces, tenemos que Kiara ha adquirido una línea de telefonía móvil con internet a un Coste Fijo de 10 soles y un Tasa de Consumo de 1,5 soles por hora consumida.

b) Una característica de las Funciones Lineales es que tanto su Dominio como Rango comprenden al Conjunto de todos los Números Reales, al ser de Pendiente constante esta Función.

Por tanto, el Dominio y el Rango de la Función en cuestión es el Conjunto de todos los Números Reales.

c) Si sabemos que C_{o} = 10, r = 1,5 y t = 48, entonces el Coste Total por concepto de 48 horas de consumo es:

C(48) = 10 + 1,5\cdot (48)

C(48) = 82

El Coste total por 48 horas de consumo de la línea telefónica con internet es 82 soles.

Invitamos a ver este problema sobre Costes: brainly.com/question/15723794

You might be interested in
7 + r = 15<br><br>A() 22<br><br>B() 8<br><br>C() 105<br><br>D() 9
guajiro [1.7K]

Answer:

B

Step-by-step explanation:

7+r=15

-7    -7

r = 8

B.8

5 0
2 years ago
Write the value of the underlined digit 6.54
LenKa [72]
6 is in the ones place
.5 is in the tenths place
and the 4 in 6.54 is in the hundredths place
3 0
2 years ago
Read 2 more answers
Consider functions of the form f(x)=a^x for various values of a. In particular, choose a sequence of values of a that converges
sleet_krkn [62]

Answer:

A. As "a"⇒e, the function f(x)=aˣ tends to be its derivative.

Step-by-step explanation:

A. To show the stretched relation between the fact that "a"⇒e and the derivatives of the function, let´s differentiate f(x) without a value for "a" (leaving it as a constant):

f(x)=a^{x}\\ f'(x)=a^xln(a)

The process will help us to understand what is happening, at first we rewrite the function:

f(x)=a^x\\ f(x)=e^{ln(a^x)}\\ f(x)=e^{xln(a)}\\

And then, we use the chain rule to differentiate:

f'(x)=e^{xln(a)}ln(a)\\ f'(x)=a^xln(a)

Notice the only difference between f(x) and its derivative is the new factor ln(a). But we know  that ln(e)=1, this tell us that as "a"⇒e, ln(a)⇒1 (because ln(x) is a continuous function in (0,∞) ) and as a consequence f'(x)⇒f(x).

In the graph that is attached it´s shown that the functions follows this inequality (the segmented lines are the derivatives):

if a<e<b, then aˣln(a) < aˣ < eˣ < bˣ < bˣln(b)  (and below we explain why this happen)

Considering that ln(a) is a growing function and ln(e)=1, we have:

if a<e<b, then ln(a)< 1 <ln(b)

if a<e, then aˣln(a)<aˣ

if e<b, then bˣ<bˣln(b)

And because eˣ is defined to be the same as its derivative, the cases above results in the following

if a<e<b, then aˣ < eˣ < bˣ (because this function is also a growing function as "a" and "b" gets closer to e)

if a<e, then aˣln(a)<aˣ<eˣ ( f'(x)<f(x) )

if e<b, then eˣ<bˣ<bˣln(b) ( f(x)<f'(x) )

but as "a"⇒e, the difference between f(x) and f'(x) begin to decrease until it gets zero (when a=e)

3 0
3 years ago
2 ( 3 x 4) - 10 + 14/2 = 21<br><br> true or false
larisa86 [58]

Answer:

true

Step-by-step explanation:

7 0
2 years ago
When the product of 6 and the square of a number is increased by 5 times the number, the result is 4.
Pani-rosa [81]

Answer

1/2 and -4/3

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • How is shading a grid to show 1 tenth different from shading a grid to show 1 hundredth?
    5·2 answers
  • 1) reflection across y = x<br> y<br> W<br> U<br> х
    15·1 answer
  • How are triangles different in spherical geometry as opposed to euclidean geometry?
    10·1 answer
  • What is 1/4 in the exponent of 3?
    8·1 answer
  • Use this CAS to divide (6x3+3x−5)3 by 3x3+2.
    13·1 answer
  • Find the slope of a line parallel to the line through the given points. P(-2, 4), Q(6, -2) 4/3 3/4 -3/4
    14·2 answers
  • 3(x + 5) = 18<br> Verbal
    14·1 answer
  • Please help! Will mark brainliest!
    8·1 answer
  • In an honors math class of 25 students, 15 are boys and 10 are girls. On the final exam, 6 boys and 3 girls received a grade of
    6·1 answer
  • In the graph below, Point A represents Owen's house, Point B represents David's house and Point C represents the school. Who liv
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!