The number of outcomes possible from flipping each coin is 2, therefore;
- The expression that can be used to find the number of outcomes for flipping 4 coins is: 2•2•2•2
<h3>How can the expression for the number of combinations be found?</h3>
The possible outcome of flipping 4 coins is given by the sum of the possible combinations of outcomes as follows;
The number of possible outcome from flipping the first coin = 2 (heads or tails)
The outcomes from flipping the second coin = 2
The outcome from flipping the third coin = 2
The outcome from flipping the fourth coin = 2
The combined outcome is therefore;
Outcome from flipping the 4 coins = 2 × 2 × 2 × 2
The correct option is therefore;
Learn more about finding the number of combinations of items here:
brainly.com/question/4658834
#SPJ1
(0,4) is the correct answer.
Answer: George Washington
Step-by-step explanation:
Answer:
The calculated value of t= 0.1908 does not lie in the critical region t= 1.77 Therefore we accept our null hypothesis that fatigue does not significantly increase errors on an attention task at 0.05 significance level
Step-by-step explanation:
We formulate null and alternate hypotheses are
H0 : u1 < u2 against Ha: u1 ≥ u 2
Where u1 is the group tested after they were awake for 24 hours.
The Significance level alpha is chosen to be ∝ = 0.05
The critical region t ≥ t (0.05, 13) = 1.77
Degrees of freedom is calculated df = υ= n1+n2- 2= 5+10-2= 13
Here the difference between the sample means is x`1- x`2= 35-24= 11
The pooled estimate for the common variance σ² is
Sp² = 1/n1+n2 -2 [ ∑ (x1i - x1`)² + ∑ (x2j - x`2)²]
= 1/13 [ 120²+360²]
Sp = 105.25
The test statistic is
t = (x`1- x` ) /. Sp √1/n1 + 1/n2
t= 11/ 105.25 √1/5+ 1/10
t= 11/57.65
t= 0.1908
The calculated value of t= 0.1908 does not lie in the critical region t= 1.77 Therefore we accept our null hypothesis that fatigue does not significantly increase errors on an attention task at 0.05 significance level