Answer:
Each discounted fee is $5 less than the rental fee.
Step-by-step explanation:
Answer:
Is always a quadrilateral.
Is a parelleogram.
Answer:
the amplitude would be 2
Step-by-step explanation:
as much as I would like to, I'm not really the best at explaining things
Answer:
he shortest distance from the point E to a side of square ABCD is 0.293
Step-by-step explanation:
The question parameters are
Shape of figure ABCD = Square
Point E lies on the diagonal line AC
The length of the segment AE = 1
Therefore, we have;
Length of AC = √(AB² + CD²) = √(1² + 1²) = √2
Hence, the point E is closer to the point C and the closest distance to a side from E is the perpendicular from the point E to BC at point E' or to CD at poit E'' which is found as follows;
AC is a bisector of ∠DAB, hence;
∠DAC = 45° = ∠CAE'
EE' = EC × cos(45°)
EC = AC - AE = √2 - 1
Therefore;
EE' = (√2 - 1) × cos(45°) = (√2 - 1) × (√2)/2 = 1 - (√2)/2 = 0.293
Hence, the shortest distance from the point E to a side of square ABCD = 0.293.
You would need to know the diameter of the field, and from that, you need to get the circumference of the field by using the formula C = πd.
By getting the circumference, you can therefore determine the perimeter/length of the fence you will need to enclose it.