Answer:
The correct answer is:
(a) 0.54
(b) 0.0385
Step-by-step explanation:
Given:
Restaurant tax,
p = 0.54
Sample size,
n = 168
Now,
(a)
The mean will be:
⇒ μ 

(b)
The standard error will be:
= ![\sqrt{[\frac{p(1-p)}{n} ]}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B%5Cfrac%7Bp%281-p%29%7D%7Bn%7D%20%5D%7D)
= ![\sqrt{[\frac{(0.54\times 0.46)}{168} ]}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B%5Cfrac%7B%280.54%5Ctimes%200.46%29%7D%7B168%7D%20%5D%7D)
= ![\sqrt{[\frac{(0.2484)}{168} ]}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B%5Cfrac%7B%280.2484%29%7D%7B168%7D%20%5D%7D)
= 
These are the factors of 46: 1,2,23,46
She must have multiplied it by 5.
That would've given her:
x - y = 15
2.5x + y = 25
Now we can add them and the y-terms will eliminate each other. Because one is -y, and the other is positive y. -y + y = 0.
E = 1/2(1.59 × 10^3)([2.7 × 10^1]^2)
plug it in to the o'l calculator and ¡bam!
x⁸ + 48x⁷ + 1008x⁶ + 12096x⁵ + 90720x⁴ + 435456x³ + 1306368x² + 2239488x + 1679616
<u>Explanation:</u>
We know
(x+y)ⁿ = ∑ ⁿCₐxⁿ⁻ᵃyᵃ
and ⁿCₐ = n! / ( a! ) . ( n-a )!
So,
(x+6)⁸ = ⁸C₀x⁸ + ⁸C₁(x)⁸⁻¹(6)¹ + ⁸C₂(x)⁸⁻²(6)² + ⁸C₃(x)⁸⁻³(6)³ + .......+ ⁸C₈(x)⁸⁻⁸(6)⁸
= ₓ⁸ + 8x⁷ₓ 6 + 28x⁶ₓ 36 + 56x⁵ₓ 216 + 70x⁴ₓ 1296 + 56x³ₓ 7776 + 28x²ₓ 46656 + 8x . 279936 + 1679616
= x⁸ + 48x⁷ + 1008x⁶ + 12096x⁵ + 90720x⁴ + 435456x³ + 1306368x² + 2239488x + 1679616
Thus, the expansion of ( x+6)⁸ using binomial theorm is
x⁸ + 48x⁷ + 1008x⁶ + 12096x⁵ + 90720x⁴ + 435456x³ + 1306368x² + 2239488x + 1679616