Answer:
<u><em>Electric Potential Energy:</em></u>
The energy that is needed to move a charge against an electric firld is called Electric Potential Energy
<u><em>Electric Potential Difference:</em></u>
The amount of work done in carrying a unit charge from one point to an other in an electric field is called Electric Potential Difference.
<u><em>Relation:</em></u>
Relation between Electric potential and electrical potential energy is given by

Here PE represents Electric potential energy
and
is Electric potential difference
it means electric potential difference is the difference in electric potential energy divided by the charge.
Answer:

Explanation:
Given that,
The magnitude of magnetic field, B = 2.21
We need to find the magnitude of the electric field. Let it is E. So,

Put all the values,

So, the magnitude of the electric field is equal to
.
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
The Answer is Option C
I think...
Sorry If i am wrong...
Cosmic, or background, radiation is the small amount of high energy radiation which is mostly left over from the big bang or from supernovas. It is mostly single protons, but also alpha particles and even sometimes heavier elements. It can also refer to the low levels of electromagnetic radiation present all over the universe.