Answer
given,
k = 250 N/m
q = 900 N/m³
(FSp)s=−kΔs−q(Δs)^3
work done = Force x displacement

limits are x = 0 to x = 0.15 m
work done

![W = [\dfrac{kx^2}{2}+\dfrac{qx^4}{4}+ C]_0^0.15](https://tex.z-dn.net/?f=W%20%3D%20%5B%5Cdfrac%7Bkx%5E2%7D%7B2%7D%2B%5Cdfrac%7Bqx%5E4%7D%7B4%7D%2B%20C%5D_0%5E0.15)

W = 3.375 + 0.1139
W = 3.3488 J
b) % cubic term =
% cubic term =
Assuming constant acceleration <em>a</em>, the object has undergoes an acceleration of
<em>a</em> = (50 m/s - 100 m/s) / (25 s) = -2 m/s²
Then the net force has a magnitude <em>F</em> such that, by Newton's second law,
<em>F</em> = (75.0 kg) <em>a</em>
<em>F</em> = (75.0 kg) (-2 m/s²)
<em>F</em> = -150 N
meaning the object is acted upon by a net force of 150 N in the direction opposite the initial direction in which the object is moving.
Answer:
b a model of water temperatures in the oceans
Explanation:
A conceptual model is a means of representing abstract theories, with the aim of helping the audience form mental pictures about the subject being discussed. Most of these models utilize diagrams to help form a better understanding of the subject.
In geothermal explorations, water temperatures can be represented using plane or cross sectional views to demonstrate the varying temperatures of water. This is a useful guidde in the exploration proceess and helps any who read the illustrations to form a better understanding of the process and conditions.