Answer:
a. P = nRTV
Explanation:
The question is incomplete. Here is the complete question.
"All of the following equations are statements of the ideal gas law except a. P = nRTV b. PV/T = nR c. P/n = RT/v d. R = PV/nT"
Ideal gas equation is an equation that describes the nature of an ideal gas. The molecule of an ideal gas moves at a particular velocity depending on the temperature. This gases collides with one another elastically. The collision that an ideal gas experience is a perfectly elastic collision.
The ideal gas equation is expressed as shown:
PV = nRT where:
P is the pressure of the gas
V is the volume
n is the number of moles
R is the ideal gas constant
T is the temperature.
Based on the formula given for an ideal gas, it can be inferred that the equation. P = nRTV is not a statement of an ideal gas equation.
The remaining option will results to an ideal gas equation if they are cross multipled.
This question involves the concepts of equilibrium and Newton's third law of motion.
The support force will be "1 pound" for the empty bucket and the support force will be "6 pounds" after pouring water into it.
- According to the condition of equilibrium, the sum of forces acting on a stationary object must be zero. Hence, the support force of the table will be equal to the total mass of the bucket.
- According to Newton's Third Law of Motion every action force has an equal but opposite reaction force. Hence, the support force will be a reaction force to the weight of the bucket.
Therefore, the support force in each case will be equal to the total mass of the bucket:
Case 1 (empty bucket):
<u>support force = 1 pound</u>
<u></u>
Case 1 (water poured):
support force = 1 pound + 5 pound
<u>support force = 6 pound</u>
<u></u>
Learn more about equilibrium here:
brainly.com/question/9076091
Non clastic sedimentary rocks from chemical reactions, chiefly in the ocean. Nonclastic and clastic sedimentary rocks are the only members of the rock family that contain fossils as well as indicators of the climate that was present when the rock was formed.
Chloroplast...................