1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
3 years ago
9

$0.72 times what equals 7.5%

Mathematics
1 answer:
Alborosie3 years ago
8 0
I think if you do 0.25 Subtract 7.5 then you will get you answer then you can multiply the answer you have with the number 0.25 and see if yo can get 7.5
You might be interested in
What is the length of segment AB? <br> 5<br> 6<br> 8<br> 10
raketka [301]
Hi! So what this is asking for is how LONG the line is, not how tall. So you see B. It is on 0. And you go to A, it is on 6. Zero from 6 is 6. So 6 is your answer.
6 0
3 years ago
Show with work please.
kolbaska11 [484]

Answer:

$\csc \left(\theta-\frac{\pi }{2}\right)=0.73$

Step-by-step explanation:

The identity you will use is:

$\csc \left(x\right)=\frac{1}{\sin \left(x\right)}$

So,

$\csc \left(\theta-\frac{\pi }{2}\right)$

$\csc \left(\theta-\frac{\pi }{2}\right)=\frac{1}{\sin \left(-\frac{\pi }{2}+\theta\right)}$

Now, using the difference of sin

Note: state that \text{sin}(\alpha\pm \beta)=\text{sin}(\alpha) \text{cos}(\beta) \pm \text{cos}(\alpha) \text{sin}(\beta)

$\csc \left(\theta-\frac{\pi }{2}\right)=\frac{1}{-\cos \left(\theta\right)\sin \left(\frac{\pi }{2}\right)+\cos \left(\frac{\pi }{2}\right)\sin \left(\theta\right)}$

Solving the difference of sin:

$-\cos \left(\theta\right)\sin \left(\frac{\pi }{2}\right)+\cos \left(\frac{\pi }{2}\right)\sin \left(\theta\right)$

-\cos \left(\theta\right) \cdot 1+0\cdot \sin \left(\theta\right)

-\text{cos} \left(\theta\right)

Then,

$\csc \left(\theta-\frac{\pi }{2}\right)=-\frac{1}{\cos \left(\theta\right)}$

Once

\text{sec}(-\theta)=\text{sec}(\theta)

And, \text{sec}(\theta)=-0.73

$-\frac{1}{\cos \left(\theta\right)}=-\text{sec}(\theta)$

$-\frac{1}{\cos \left(\theta\right)}=-(-0.73)$

$-\frac{1}{\cos \left(\theta\right)}=0.73$

Therefore,

$\csc \left(\theta-\frac{\pi }{2}\right)=0.73$

3 0
3 years ago
Will give brainliest
Daniel [21]

Answer:b

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Six more than five times a number x is at least twenty one
LUCKY_DIMON [66]
5x3=15. 15+6=21. The answer would be 3
8 0
3 years ago
Can someone please help me this is due in 10 mins
____ [38]
<h2>Answer: 250 Hamburgers sold</h2><h2>Step-by-step explanation:</h2><h2><u><em>x = hamburgers </em></u></h2><h2><u><em>y = cheeseburgers </em></u></h2><h2><u><em>x+y=434 </em></u></h2><h2><u><em>66 fewer cheeseburgers than hamburgers </em></u></h2><h2><u><em> </em></u></h2><h2><u><em>  </em></u></h2><h2><u><em>y = x - 66 </em></u></h2><h2><u><em>Substitute y into the first equation </em></u></h2><h2><u><em>x + (x-66) = 434 </em></u></h2><h2><u><em>2x = 434 + 66 </em></u></h2><h2><u><em>2x = 500 </em></u></h2><h2><u><em>x = 250 hamburgers sold</em></u></h2>
7 0
3 years ago
Other questions:
  • Jim has calculated the area of a rectangle to be x^3 + x^2 + x + 1. If the width of the rectangle is x + 1, then its length is
    12·1 answer
  • Mmmmmmmmmmmmmmmmmm..................
    11·2 answers
  • Four grey polygons join together as shown in the diagram. I’ve calculated angle a but I don’t know angle b. Angle a is 108
    8·1 answer
  • Third one (Probably two or one more left)
    9·2 answers
  • Please help! ASAP, no bots
    13·1 answer
  • PLEASE HELP!!! Urgent. Will mark as brainliest
    14·1 answer
  • Analyze this equation.
    5·1 answer
  • SOMEONE PLEASE HELP I WILL LITERALLY BLOW YOU I JUST NEED YOU TO ANSWER THIS pedros check register showed a balance of $550.94.
    14·1 answer
  • What is the expanded form of this number?
    14·2 answers
  • Given the infinite series: <img src="https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%281%29%283%29%7D%20%2B%5Cfrac%7B1%7D%7B%283%29%28
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!