312,000$.
I just found 60 percent of 520,000 so I hope that’s what you wanted, and I am truly sorry if it isn’t.
Answer:
4 my good sir
Step-by-step explanation:
Answer:
j^13
Step-by-step explanation:
Answer:
(3m-4/5)2
Final result :
(15m - 4)2
——————————
52
Step by step solution :
Step 1 :
4
Simplify —
5
Equation at the end of step 1 :
4
(3m - —)2
5
Step 2 :
Rewriting the whole as an Equivalent Fraction :
2.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using 5 as the denominator :
3m 3m • 5
3m = —— = ——————
1 5
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
2.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
3m • 5 - (4) 15m - 4
———————————— = ———————
5 5
Equation at the end of step 2 :
(15m - 4)
(—————————)2
5
Step 3 :
Final result :
(15m - 4)2
———
52
Step-by-step explanation:
Answer: The dimensions are: " 1.5 mi. × ³⁄₁₀ mi. " .
_______________________________________________
{ length = 1.5 mi. ; width = ³⁄₁₀ mi. } .
________________________________________________
Explanation:
___________________________________________
Area of a rectangle:
A = L * w ;
in which: A = Area = (9/20) mi.² ,
L = Length = ?
w = width = (1/5)*L = (L/5) = ?
________________________________________
A = L * w ; we want to find the dimensions; that is, the values for
"Length (L)" and "width (w)" ;
_______________________________________
Plug in our given values:
_______________________________________
(9/20) mi.² = L * (L/5) ; in which: "w = L/5" ;
→ (9/20) = (L/1) * (L/5) = (L*L)/(1*5) = L² / 5 ;
↔ L² / 5 = 9/20 ;
→ (L² * ? / 5 * ?) = 9/20 ?
→ 20÷5 = 4 ; so; L² *4 = 9 ;
↔ 4 L² = 9 ;
→ Divide EACH side of the equation by "4" ;
→ (4 L²) / 4 = 9/4 ;
______________________________________
to get: → L² = 9/4 ;
Take the POSITIVE square root of each side of the equation; to isolate "L" on one side of the equation; and to solve for "L" ;
___________________________________________
→ ⁺√(L²) = ⁺√(9/4) ;
→ L = (√9) / (√4) ;
→ L = 3/2 ;
→ w = L/5 = (3/2) ÷ 5 = 3/2 ÷ (5/1) = (3/2) * (1/5) = (3*1)/(2*5) = 3/10;
________________________________________________________
Let us check our answers:
_______________________________________
(3/2 mi.) * (3/10 mi.) =? (9/20) mi.² ??
→ (3/2)mi. * (3/10)mi. = (3*3)/(2*10) mi.² = 9/20 mi.² ! Yes!
______________________________________________________
So the dimensions are:
Length = (3/2) mi. ; write as: 1.5 mi.
width = ³⁄₁₀ mi.
___________________________________________________
or; write as: " 1.5 mi. × ³⁄₁₀ mi. " .
___________________________________________________