Answer:
A.
Step-by-step explanation:
Surface area of the original cone
When, radius is quadrupled and slant height is reduced to one sixth
Plug the above values of r and
in equation (1), new surface area becomes:

Answer:
The steady state proportion for the U (uninvolved) fraction is 0.4.
Step-by-step explanation:
This can be modeled as a Markov chain, with two states:
U: uninvolved
M: matched
The transitions probability matrix is:

The steady state is that satisfies this product of matrixs:
![[\pi] \cdot [P]=[\pi]](https://tex.z-dn.net/?f=%5B%5Cpi%5D%20%5Ccdot%20%5BP%5D%3D%5B%5Cpi%5D)
being π the matrix of steady-state proportions and P the transition matrix.
If we multiply, we have:

Now we have to solve this equations

We choose one of the equations and solve:

Then, the steady state proportion for the U (uninvolved) fraction is 0.4.
we know that
The circumcenter of a triangle is the point where the perpendicular bisectors of the sides intersect. It is also the center of the circumcircle, the circle that passes through all three vertices of the triangle
The distance of the circumcenter to the vertices of the triangle is equal to the radius of the circle
see the attached figure to better understand the problem
therefore
the answer is
The cell phone company must be place the new cell tower in the circumcenter of the triangle formed by the center of the three towns
By the chain rule,

which follows from
.
is then a function of
; denote this function by
. Then by the product rule,
![\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1x\dfrac{\mathrm dy}{\mathrm dt}\right]=-\dfrac1{x^2}\dfrac{\mathrm dy}{\mathrm dt}+\dfrac1x\dfrac{\mathrm df}{\mathrm dx}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dt%7D%5Cright%5D%3D-%5Cdfrac1%7Bx%5E2%7D%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dt%7D%2B%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20df%7D%7B%5Cmathrm%20dx%7D)
and by the chain rule,

so that

Then the ODE in terms of
is

The characteristic equation

has two roots at
and
, so the characteristic solution is

Solving in terms of
gives
