Given:
0.1% of all transactions are fraudulent
99% correct identification whether a transaction is fraudulent or not.
Scanned 5,000,000 transactions.
5,000,000 x 0.1% = 5,000 fraudulent transactions.
For me, there are 5,000 fraudulent transactions. This is based on the 0.1% rather than the 99%. Because the problem clearly states that the 0.1% of ALL transaction is identified as fraudulent. The 99% of the computer program only deals with the correct identification of the transaction as either fraudulent or not. For me, it is not a clear measure of the true number of fraudulent transactions.
The term "autonomous" refers to an ordinary differential equation that relates the derivatives of the dependent variable as a function *only* of the dependent variable. In other words, the ODE doesn't explicitly depend on the independent variable.
Examples:

is autonomous

is *not* autonomous
X - 2y = -24
x - y = 4
Isolate x in the first equation by adding 2y to both sides.
x = -24 + 2y
Now plug in this value of x into the second equation.
(-24 + 2y) - y = 4
Solve. Combine all like terms, 2y - y.
-24 + y = 4
Add 24 to both sides to isolate y.
y = 28
Now plug y back into the first equation to find x.
x - 2(28) = -24
x - 56 = -24
Add 56 to both sides to isolate x.
x = 32
The solution is (32, 28).
Answer:
3 x^2 - x + -1
Step-by-step explanation:
Simplify the following:
-(4 x - 2 x^2 - 3) + x^2 + 3 x - 4
Factor -1 out of -2 x^2 + 4 x - 3:
--(2 x^2 - 4 x + 3) + x^2 + 3 x - 4
(-1)^2 = 1:
2 x^2 - 4 x + 3 + x^2 + 3 x - 4
Grouping like terms, 2 x^2 + x^2 + 3 x - 4 x - 4 + 3 = (x^2 + 2 x^2) + (3 x - 4 x) + (-4 + 3):
(x^2 + 2 x^2) + (3 x - 4 x) + (-4 + 3)
x^2 + 2 x^2 = 3 x^2:
3 x^2 + (3 x - 4 x) + (-4 + 3)
3 x - 4 x = -x:
3 x^2 + -x + (-4 + 3)
3 - 4 = -1:
Answer: 3 x^2 - x + -1