Where is the math problem?
The unit rate is 0.75 per x
H = 16 cm
s = 16.0702 cm
a = 3 cm
e = 16.14 cm
r = 1.5 cm
V = 48 cm3
L = 96.421 cm2
B = 9 cm2
A = 105.421 cm<span>2
The volume of a square pyramid:V = (1/3)a2hSlant Height of a square pyramid:By the Pythagorean theorem, we know thats2 = r2 + h2since r = a/2s2 = (1/4)a2 + h2, ands = √(h2 + (1/4)a2)This is also the height of a triangle sideLateral Surface Area of a square pyramid (4 isosceles triangles):For the isosceles triangle Area = (1/2)Base x Height. Our base is side length a, and for this calculation our height for the triangle is slant height s. With four
sides we need to multiply by 4.L = 4 x (1/2)as = 2as = 2a√(h2 + (1/4)a2)Squaring the 2 to get it back inside the radical,L = a√(a2 + 4h2)Base Surface Area of a square pyramid (square):B = a2Total Surface Area of a square pyramid:A = L + B = a2 + a√(a2 + 4h2))A = a(a + √(a2 + 4h2))</span>
Answer:
(34, 48)
Step-by-step explanation:
According to the Empirical Rule, 95% of normally distributed data lie within two standard deviations of the mean. That, in turn, means 95% of the data in this problem lie within 2(3.5 min), or 7 min, of the mean:
41 - 7 < mean < 41 + 7, or
34 < mean < 48, or simply (34, 48)
The graph has a vertex at (3, -2). It extends upward from there linearly at a slope of -1 to the left and 1 to the right. It is the graph of an absolute value function. If we assume it keeps extending upwards the domain is all real numbers. (which is what i would assume even though there's no arrows it doesn't have decipherable endpoints). The range is y ≥ -2 with y -intercept (0,1), and x-intercepts: (5,0) & (1,0).
To write the equation for this function, I would acknowledge that it is the translation of the graph of the standard absolute value function: f(x) = |x| ; right 3 and down 2. Which would be to subtract 3 from x and subtract 2 from the end.
f(x) = |x - 3| - 2