G(x) = 2x² - 5x + 2 = 2x² - 4x - x + 2 = 2x · x - 2x · 2 - 1 · x - 1 · (-2)
= 2x(x - 2) -1(x - 2) = (x - 2)(2x - 1)
g(x) = 0 ⇔ (x - 2)(2x - 1) = 0 ⇔ x - 2 = 0 or 2x - 1 = 0
x = 2 or x = 0.5
Answer: 109/1000
.109 can not be reduced, so we must put it in a fraction with 1,000.
So, the fraction would be 109/1000, because we need a denominator as 1,000.
The answer = 109/1000
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
the percentage increase for bread and cake is 66.67% and 20% respectively
Step-by-step explanation:
The computation of the percentage increase for each bakery item is shown below:
For bread
= (25 - 15) ÷ 15
= 66.67%
For cakes
= (12 - 10) ÷ (10)
= 20%
Hence, the percentage increase for bread and cake is 66.67% and 20% respectively