Answer:
4.8 m/s
Explanation:
When she catches the train,
- They will have travelled the same distance.and
- Their speeds will be equal
The formula for the distance covered by the train is
d = ½at² = ½ × 0.40t² = 0.20t²
The passenger starts running at a constant speed 6 s later, so her formula is
d = v(t - 6.0)
The passenger and the train will have covered the same distance when she has caught it, so
(1) 0.20t² = v(t - 6.0)
The speed of the train is
v = at = 0.40t
The speed of the passenger is v.
(2) 0.40t = v
Substitute (2) into (1)
0.20t² = 0.40t(t - 6.0) = 0.40t² - 2.4 t
Subtract 0.20t² from each side
0.20t² - 2.4t = 0
Factor the quadratic
t(0.20t - 2.4) = 0
Apply the zero-product rule
t =0 0.20t - 2.4 = 0
0.20t = 2.4
(3) t = 12
We reject t = 0 s.
Substitute (3) into (2)
0.40 × 12 = v
v = 4.8 m/s
The slowest constant speed at which she can run and catch the train is 4.8 m/s.
A plot of distance vs time shows that she will catch the train 6 s after starting. Both she and the train will have travelled 28.8 m. Her average speed is 28.8 m/6 s = 4.8 m/s.
Pros -
It doesn't cost much
Power stations are very compact
Transportation of the material is easy
Cons-
It's not safe
Nuclear waste take 200 years to degrade
Greater risk of explosion
-IF THIS HELPED WHICH I HOPE COMMENT BELOWw ↓PLEASEX . THANKs!
Answer:
x₂ = 1.33 m
Explanation:
For this exercise we must use the rotational equilibrium condition, where the counterclockwise rotations are positive and the zero of the reference system is placed at the turning point on the wall
Στ = 0
W₁ x₁ - W₂ x₂ = 0
where W₁ is the weight of the woman, W₂ the weight of the table.
Let's find the distances.
Since the table is homogeneous, its center of mass coincides with its geometric center, measured at zero.
x₁ = 2.5 -1.5 = 1 m
The distance of the person is x₂ measured from the turning point, at the point where the board begins to turn the girl must be on the left side so her torque must be negative
x₂ =
let's calculate
x₂ =
x₂ = 1.33 m
Answer:
Thrust developed = 212.3373 kN
Explanation:
Assuming the ship is stationary
<u>Determine the Thrust developed</u>
power supplied to the propeller ( Punit ) = 1900 KW
Duct distance ( diameter ; D ) = 2.6 m
first step : <em>calculate the area of the duct </em>
A = π/4 * D^2
= π/4 * ( 2.6)^2 = 5.3092 m^2
<em>next : calculate the velocity of propeller</em>
Punit = (A*v*β ) / 2 * V^2 ( assuming β = 999 kg/m^3 ) also given V1 = 0
∴V^3 = Punit * 2 / A*β
= ( 1900 * 10^3 * 2 ) / ( 5.3092 * 999 )
hence V2 = 8.9480 m/s
<em>Finally determine the thrust developed </em>
F = Punit / V2
= (1900 * 10^3) / ( 8.9480)
= 212.3373 kN
Answer:
1. Periods; that are what horizontal rows on a periodic table are called.
2. Each period represents the number of levels
Explanation: