Answer:
The magnitude of the charge on each sphere is 0.135 μC
Explanation:
Given that,
Mass = 1.0
Distance = 2.0 cm
Acceleration = 414 m/s²
We need to calculate the magnitude of charge
Using newton's second law


Put the value of F

Put the value into the formula





Hence, The magnitude of the charge on each sphere is 0.135μC.
Democritus was the one who did not have experimental evidence to support his theory of the atom.
Answer: Option 4
<u>Explanation:
</u>
The discovery of atoms were first stated by Democritus but due to the absence of any experimental proof, his statement was not noted as significant at that time.
After this, Dalton made the specific assumptions formulating some postulates for the atomic theory with proof. Then the cathode rays tube experiments performed by Thomson lead to the formation of plum pudding models of atom.
This is followed by Rutherford’s gold foil experiment discovering the presence of nucleus inside the atoms. So, Democritus first stated but due to absence of experimental evidences, his theory of atoms were not supported at that time.
It'd be an unbalanced force
Answer:
Li has less mass and therefore less inertia, so he can change his motion more easily than Raj.
Explanation:
Inertia describes the resistance of an object to any change in its state of motion, and it depends on the mass of the object only. In particular:
- if an object has a large inertia (large mass), then it is more difficult to change its state of motion (i.e. to put it in motion, or to slow it down, or to change its direction of motion)
- if an object has small inertia (small mass), then it is more easy to change its state of motion
In this problem, Li has less mass than Raj, so he has less inertia, therefore he can change his motion more easily than Raj.