Answer:
The temperature is 2541.799 K
Explanation:
The formula for black body radiation is given by the relation;
Q = eσAT⁴
Where:
Q = Rate of heat transfer 56.6
σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)
A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²
e = emissivity = 0.288
T = Temperature
Therefore, we have;
T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴
T = 2541.799 K
The temperature = 2541.799 K.
No it's the quite opposite simple
Answer:
1000 N
Explanation:
First, we need to find the deceleration of the running back, which is given by:

where
v = 0 is his final velocity
u = 5 m/s is his initial velocity
t = 0.5 s is the time taken
Substituting, we have

And now we can calculate the force exerted on the running back, by using Newton's second law:

so, the magnitude of the force is 1000 N.
Answer:
hypothesis , hope it helps
Explanation:
There is no need for tangential acceleration when moving in a circle at a constant speed.
<h3>What is centripetal acceleration?</h3>
centripetal acceleration refers to the speed at which a body moves through a circle. Due to the fact that velocity is a vector quantity (i.e., it has both a magnitude, the speed, and a direction), when a body travels in a circle, its direction is constantly changing, which causes a change in velocity, which results in an acceleration.
<h3>Which is an example of centripetal acceleration?</h3>
Centripetal acceleration occurs when you spin a ball on a string above your head. A car experiences centripetal acceleration when it is being driven in a circle. Additionally, a satellite in orbit around the Earth experiences centripetal acceleration.
To know more about tangential acceleration :
brainly.com/question/14993737
#SPJ9