It is durable because it is one of the strongest metals and doesn't corrode easily.
Answer:
F₁ = 4 F₀
Explanation:
The force applied on the string by the ball attached to it, while in circular motion will be equal to the centripetal force. Therefore, at time t₀, the force on ball F₀ is given as:
F₀ = mv₀²/r --------------- equation (1)
where,
F₀ = Force on string at t₀
m = mass of ball
v₀ = speed of ball at t₀
r = radius of circular path
Now, at time t₁:
v₁ = 2v₀
F₁ = mv₁²/r
F₁ = m(2v₀)²/r
F₁ = 4 mv₀²/r
using equation (1):
<u>F₁ = 4 F₀</u>
Answer:
<h2>2.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>2.2 m/s²</h3>
Hope this helps you
Answer:
<em>The difference in pressure between the external air pressure, and the internal air pressure of the middle ear.</em>
Explanation:
First of all, we should note that pressure decreases with height and increases with depth. The air within the middle ear (between the ear drum and the Eustachian tube) adjusts itself to respond to the atmospheric pressure, or when we yawn. At a high altitude like on the hill, the air pressure in the middle ear, is fairly low (this is to balance the low air pressure at this height). While riding down the hill quickly, there is little time for the air pressure in the ear to readjust itself to the increasing external air pressure, causing the external air to push into the ear drum. Along the way, the air within the middle ear is adjusted by the opening of the Eustachian tube, allowing more air into the space in the middle ear to balance the external air pressure. This readjustment causes the ear to pop.