Answer:
1.) No ;
2.) - 0.931
3.) 0.1785
Step-by-step explanation:
Given :
μ = 84.3 ; xbar = 81.9 ; s = 17.3
H0 : μ = 84.3
H1 : μ < 84.3
The test statistic :
(xbar - μ) ÷ (s/√(n))
(81.9 - 84.3) / (17.3/√45)
-2.4 / 2.5789317
= - 0.9306
= - 0.931
Using the test statistic, we could obtain the Pvalue : df = n - 1 ; df = 45 - 1 = 44
Using the Pvalue calculator :
Pvalue(-0.9306, 44) = 0.1785
Using α = 0.05
The Pvalue > α
Then we fail to reject H0; and conclude that there is no significant evidence to support the claim that the mean waiting time is less than 84.3
One way you could solve this is to just multiply the top and bottom out so that you get 9/81, reducing it by 9/9 to get 1/9 or option C.
Another way would be to do

since dividing numbers with exponents would be subtracting the bottom exponent from the top exponent, provided that the base number (in this case 3) is the same for both. For this method, you would get

, which is equal to 1/9 or .1 repeating, the same answer that you'd get with the first method.
Answer:
H (36 / 5)
Divide each of the numbers and see which one is closest to seven
This doesn’t make any sense