Answer:
B
Step-by-step explanation:
V = 4/3 * radius^3 * pi = 4/3 * 4^3 * pi = 256 /3 * pi
Answer:
m
Step-by-step explanation:
Let
Bas length of box=b
Height of box=h
Material used in constructing of box=36 square m
We have to find the height h and base length b of the box to maximize the volume of box.
Surface area of box=




Volume of box, V=
Substitute the values


Differentiate w. r.t b







The negative value of b is not possible because length cannot be negative.
Again differentiate w.r.t b

At

Hence, the volume of box is maximum at
.




m
16/36, 24/54, 32/72 and 40/90.
these are the equivalent fractions of 8/18
PLEASE MARK MY ANSWER AS BRAINLIEST
650-15%= 552.50 (they pay the manager 97.50) which leaves 552.50 profit 10% goes to ST(55.25 to the ST) which is 497.25 left for the band
Check the picture below.
so by graphing those two, we get that little section in gray as you see there, now, x = 6 is a vertical line, so we'll have to put the equations in y-terms and this is a washer, so we'll use the washer method.

the way I get the radii is by using the "area under the curve" way, namely, I use it to get R² once and again to get r² and using each time the axis of rotation as one of my functions, in this case the axis of rotation will be f(x), and to get R² will use the "farthest from the axis of rotation" radius, and for r² the "closest to the axis of rotation".

now, both lines if do an equation on where they meet or where one equals the other, we'd get the values for y = 0 and y = 1, not surprisingly in the picture.
![\displaystyle\pi \int_0^1\left( 3y-3y^2-\cfrac{y^2}{16}+\cfrac{y^4}{16} \right)dy\implies \pi \left( \left. \cfrac{3y^2}{2} \right]_0^1-\left. y^3\cfrac{}{} \right]_0^1-\left. \cfrac{y^3}{48}\right]_0^1+\left. \cfrac{y^5}{80} \right]_0^1 \right) \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \cfrac{59\pi }{120}~\hfill](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cpi%20%5Cint_0%5E1%5Cleft%28%203y-3y%5E2-%5Ccfrac%7By%5E2%7D%7B16%7D%2B%5Ccfrac%7By%5E4%7D%7B16%7D%20%5Cright%29dy%5Cimplies%20%5Cpi%20%5Cleft%28%20%5Cleft.%20%5Ccfrac%7B3y%5E2%7D%7B2%7D%20%5Cright%5D_0%5E1-%5Cleft.%20y%5E3%5Ccfrac%7B%7D%7B%7D%20%5Cright%5D_0%5E1-%5Cleft.%20%5Ccfrac%7By%5E3%7D%7B48%7D%5Cright%5D_0%5E1%2B%5Cleft.%20%5Ccfrac%7By%5E5%7D%7B80%7D%20%5Cright%5D_0%5E1%20%5Cright%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20%5Ccfrac%7B59%5Cpi%20%7D%7B120%7D~%5Chfill)