1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
3 years ago
13

Consider the graphs of j(x)== sin (6x- pi 2 )+11 and k(x) = 7sin(6x - pi/2) - 11 Which feature of the graph of k(x) is different

from the graph of j(x) ? the amplitude the frequency the phase shift the vertical shift
Mathematics
1 answer:
Tcecarenko [31]3 years ago
4 0

Answer:

The answer is D

You typed the first equation wrong but i just did this on edgenuity (with the right equations) and got it right

Step-by-step explanation:

You might be interested in
Find that sale price: jeans $85.99 at a 15% discount
arlik [135]

The sale price of the jeans would be $73.09

5 0
3 years ago
What is the point-slope form of a line with a slope -3 that contains the point (10,-1)
Citrus2011 [14]
<h2>y + 1 = -3(x - 10)</h2>

Here's the formula:

y - y1 = m(x - x1)

Substitute numbers accordingly:

y1: so 1 goes in the y1 spot (you switch the signs because it was already negative)

x1:  and 10 goes to the x1 spot

m:  -3 belongs in m

4 0
3 years ago
mariah has been hired as a receptionist.She is paid a flat rate of $225 each week and ears an additional $11.25 for every hour t
blsea [12.9K]
675 = 225 + 11.25h <== ur equation
5 0
3 years ago
The rule (x, 3/4y) is applied to a polygon. Is the image similar to the original polygon? Explain.
Mnenie [13.5K]
Yes.  The new polygon is 3/4 the size of the old one.
5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Dahlia has just enough money to buy either 6pears and 20oranges or 12oranges and 11pears. A pear costs $0.80. How much does an o
    13·1 answer
  • If Aaliyah runs 212 miles each day, how many miles will Aaliyah run in 3 days?
    13·1 answer
  • Zach has 3/4 hour to play video games. It takes him 1/12 hours to set up the system. Each round of his favorite game takes 1/6 h
    7·2 answers
  • What is the diameter of a circle with a circumference of 282.6 m? round your answer to the nearest meter.
    11·1 answer
  • In April, a customer buys 1 MCS Oct 50 call for 9 and sells 1 MCS Jul 50 call for 4. What will the customer's profit or loss be
    8·1 answer
  • What is the slope of a line that passes through the points (-5,-3) and (9,-6)
    5·1 answer
  • Please help me this is due very soon!(Q13)
    5·1 answer
  • Suppose the mean height in inches of all 9th grade students at one high school is estimated. The population standard deviation i
    13·2 answers
  • What is the value of 34 + 3.5(−44÷2)? <br><br>a.−111 <br><br>b.−43 <br><br>c.43 <br><br>d.111
    13·1 answer
  • 6. Add<br> 2р + 6q<br> 4р — 8q​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!