Answer:
period of oscillations is 0.695 second
Explanation:
given data
mass m = 0.350 kg
spring stretches x = 12 cm = 0.12 m
to find out
period of oscillations
solution
we know here that force
force = k × x .........1
so force = mg = 0.35 (9.8) = 3.43 N
3.43 = k × 0.12
k = 28.58 N/m
so period of oscillations is
period of oscillations = 2π ×
................2
put here value
period of oscillations = 2π ×
period of oscillations = 0.6953
so period of oscillations is 0.695 second
The diagram represents a chain reaction that is caused by nuclear fission.
<h3>What is a nuclear fission reaction?</h3>
A nuclear fission reaction is a reaction in which the nucleus of a larger atom is split into two or more smaller nucleus of atoms.
Nuclear fission can proceed in the form of a chain reaction in which the products of the first fission reaction are used to initiate further fission reactions.
Therefore, the diagram represents a chain reaction that is caused by nuclear fission.
Learn more about nuclear fission at: brainly.com/question/22155336
#SPJ1
Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>
I’m pretty sure it is an object with a net force of zero. All forces are balanced and EQUAL
Answer:
Having the inside dimensions (ID) and the outside dimensions (OD) will allow you to figure out the wall thickness on tubing. You would need to subtract the ID from the OD and then divide by two. This number is the wall thickness.
Explanation: