La velocidad del sonido en el aire (a una temperatura de 20 ºC) es de 343 m/s. La ecuación creada por Newton y posteriormente modificada por Laplace que permite obtener la velocidad del sonido en el aire teniendo en cuenta la variable de la temperatura es "331+(0,6 x Temperatura)".
Answer:
T=575.16K
Explanation:
To solve the problem we proceed to use the 1 law of diffusion of flow,
Here,

is the rate in concentration
is the rate in thickness
D is the diffusion coefficient, where,

Replacing D in the first law,

clearing T,

Replacing our values



Answer:
The necessary information is if the forces acting on the block are in equilibrium
The coefficient of friction is 0.577
Explanation:
Where the forces acting on the object are in equilibrium, we have;
At constant velocity, the net force acting on the particle = 0
However, the frictional force is then given as
F = mg sinθ
Where:
m = Mass of the block
g = Acceleration due to gravity and
θ = Angle of inclination of the slope
F = 5×9.81×sin 30 = 24.525 N
Therefore, the coefficient of friction is given as
24.525 N = μ×m×g × cos θ = μ × 5 × 9.81 × cos 30 = μ × 42.479
μ × 42.479 N= 24.525 N
∴ μ = 24.525 N ÷ 42.479 N = 0.577
Answer:
Energy=3.1times 10^-17 J
Rest mass: 6.2 kg
Speed: 47.5 m/s
Wavelength: 2.659 times 10^-6
Momentum: 67.3 kg(m/s)
Explanation:
Answer:
The entire cart/hanging mass system follows the same law, ΣF = ma. This means that plotting force vs. acceleration yields a linear relationship (of the form y = mx).