The units for mass are grams (g) and kilograms (kg)
the units for volume are millilitres (ml) and litres (l)
We have the equation for electric field E = kQ/
Where k is a constant, Q is the charge of source and d is the distance from center.
In this case E is inversely proportional to 
So, 
= 485 N/C
= 0.208 cm
= 0.620 cm
= ?

= 
= 53.20 N/C
<span>carrying twice the weight and climbing twice as high</span>
Answer:
The net force acting on the car is
3
×
10
3
Newtons.
Hope this helps you
Explanation:
Force is defined as the product of the mass of the body and its aaceleration,
⇒
F
=
m
a
Substituting the above given values we get,
F
=
(
1500
k
g
)
(
2.0
m
/
s
2
)
=
3000
N
=
3
×
10
3
N
.
Do you remember this formula for the distance traveled while accelerated ?
<u>Distance = (initial speed) x (t) plus (1/2) x (acceleration) x (t²)</u>
I think this is exactly what we need for this problem.
initial speed = 20 m/s down
acceleration = 9.81 m/s² down
t = 3.0 seconds
Distance down = (20) x (3) plus (1/2) x (9.81) x (3)²
Distance = (60) plus (4.905) x (9)
Distance = (60) plus (44.145) = 104.145 meters
Choice <em>D)</em> is the closest one.