<h3><u>The equation in slope-intercept form for the line that passes through the point (-8, 3) and is parallel to the line -5x + 4y = 8 is:</u></h3>

<em><u>Solution:</u></em>
Given that,
We have to find the equation in slope-intercept form for the line that passes through the point (-8, 3) and is parallel to the line -5x + 4y = 8
<em><u>The equation of line in slope intercept form is given as:</u></em>
y = mx + c
Where "m" is the slope of line
From given,
-5x + 4y = 8
Rearrange to slope intercept form
4y = 5x + 8

On comparing the above equation with slope intercept form,

We know that, slopes of parallel lines are equal
Therefore, slope of line parallel to the line -5x + 4y = 8 is:



Substitute c = 13 and m = 5/4 in eqn 1

Thus the equation of line in slope intercept form is found
Lateral area = Perimeter x height
Lateral area = (2 + 7 + 7.28) x 31 = 16.28 x 31 = 505 m²
Surface area = 2(1/2 x 2 x 7) + 505 = 519 m²
Answer: Lateral area = 505 m² ; Surface area = 519 m²
3.75
14.85
0.89
Those are the answers
Answer:
x = 30
Step-by-step explanation:
m<E = [m(arc)AD - m(arc)BC]/2
50 = (130 - x)/2
100 = 130 - x
-x = -30
x = 30
The ratio is 5:12
Glad I help you