1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
3 years ago
7

URGENT!!!!!!! i really need help. can some help with this piecewise function? or at least explain it to me so i can figure it ou

t...
f(x)= {2 if x ≥ 4
Mathematics
1 answer:
USPshnik [31]3 years ago
3 0
Is it F = 1/2  Don't take my word for it, though, I am just trying to solve it in a way that would give you an answer because the problem itself, didn't make much sense. Good Luck!
You might be interested in
Use Gauss-Jordan elimination to solve the following linear system:
Olenka [21]
-3x + 4y = -6

20x - 4y = 40
-----------------------
17x = 34

x = 2

5(2) - y = 10

10 - y = 10

y = 0

the correct answer is D. (2,0)
4 0
3 years ago
Read 2 more answers
A baseball pitcher won 60% of his games. How many did he win if he pitched 35 games?
Sergio039 [100]

Answer:

21 games

Step-by-step explanation:

Multiply the number of games by the percentage.

35 · 0.60 = 21

6 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
LITERALLY THE MOST ROCK HARD QUESTION I HAVE EVER TRIED TO SOLVE PLEASE HELP ME OUT BECAUSE MY EYES ARE BURNING FROM STARING AT
ivolga24 [154]
1) You will need to simplify both sides of the inequality. 
6x-13 \ \textless \  6x-12&#10;

2) Now you will need to subtract the like terms which leaves you with 
-13\ \textless \ -12


We cannot do anything else so the answer will be a<span>ll real numbers are solutions.</span>
6 0
3 years ago
Bill is making a poster with an area of 30 square inches. Jeff is making a poster with an area of 30 square centimeters. Phil th
sukhopar [10]
No, because there are 2.54 centimeters in one inch which means 30cm=11.8111 inches therefore they won't be the same size.
8 0
3 years ago
Other questions:
  • What is the value of mc013-1.jpg?<br> –4<br> –2<br> 2<br> 4<br><br> the pic is the .jpg
    11·2 answers
  • on the first day of the clothing drive 11 rain jackets were collected at the end of the drive 10 times that number of rain jacke
    11·1 answer
  • ok what about this.. i'm sorry i just can't think straight at the moment i have too much going on.. 2(-10)-9y=-38 find the value
    14·1 answer
  • 2. Solve in two ways<br> 1/2 +1/4
    5·1 answer
  • Write the fraction as a percent 1/25
    8·1 answer
  • A bag containing 50 pieces of hard candy has 40% orange pieces. How many pieces are orange?
    5·1 answer
  • Students at Salt Lake Community College pay 1.667 * 104 dollars for tuition.Students at George Washington University pay 5.5011
    11·1 answer
  • Draw a 30-60-90 triangle of any size. Using the ratios that you know, write expressions for sin(30) and
    15·1 answer
  • Help me please! correct answer gets brainliest!!
    5·2 answers
  • This diagram shows the dimensions of a plastic tab
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!