-3x + 4y = -6
20x - 4y = 40
-----------------------
17x = 34
x = 2
5(2) - y = 10
10 - y = 10
y = 0
the correct answer is D. (2,0)
Answer:
21 games
Step-by-step explanation:
Multiply the number of games by the percentage.
35 · 0.60 = 21
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Exponential Rule [Rewrite]:

<u>Calculus</u>
Limits
- Right-Side Limit:

Limit Rule [Variable Direct Substitution]: 
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integrals
Integration Constant C
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
U-Solve
Improper Integrals
Exponential Integral Function: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integral] Rewrite [Exponential Rule - Rewrite]:

- [Integral] Rewrite [Improper Integral]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-substitution.</em>
- Set:

- Differentiate [Basic Power Rule]:

- [Derivative] Rewrite:

<em>Rewrite u-substitution to format u-solve.</em>
- Rewrite <em>du</em>:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute in variables:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute [Exponential Integral Function]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28u%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Back-Substitute:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-x%5E2%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Evaluate [Integration Rule - FTC 1]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-1%29%20-%20Ei%28a%29%5D)
- Simplify:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

∴
diverges.
Topic: Multivariable Calculus
1) You will need to simplify both sides of the inequality.

2) Now you will need to subtract the like terms which leaves you with

We cannot do anything else so the answer will be
a<span>
ll real numbers are solutions.</span>
No, because there are 2.54 centimeters in one inch which means 30cm=11.8111 inches therefore they won't be the same size.