Answer: The mean is 3780
Step-by-step explanation:
Mean is found by adding all values and dividing the sum by how many values were added.
4250+4019+3895+3739+3401+3376=22680
22680/6=3780
Answer:
Each person gets one eighth of the pie.
Step-by-step explanation:
1/2 pie divided by 4.
1/2 / 4 = 1/2 / 4/1 = 1/2 × 1/4 = 1/8
Answer: Each person gets one eighth of the pie.
we are given a function

First translation:
The graph of function is vertically stretched by a factor of 7
Whenever we vertically stretch any function by 'a' units
so, we can write it as

Here, it is vertically stretch by 7
so, we get


Second translation:
Whenever we reflect any function about x-axis
we multiply y-value by -1
so, we can write it as

Here , it is reflected in the x-axis
so, we can multiply by -1 to y-value
we get

.............Answer
Answer:
Here we will use algebra to find three consecutive integers whose sum is 300. We start by assigning X to the first integer. Since they are consecutive, it means that the 2nd number will be X + 1 and the 3rd number will be X + 2 and they should all add up to 300. Therefore, you can write the equation as follows:
(X) + (X + 1) + (X + 2) = 300
To solve for X, you first add the integers together and the X variables together. Then you subtract three from each side, followed by dividing by 3 on each side. Here is the work to show our math:
X + X + 1 + X + 2 = 300
3X + 3 = 300
3X + 3 - 3 = 300 - 3
3X = 297
3X/3 = 297/3
X = 99
Which means that the first number is 99, the second number is 99 + 1 and the third number is 99 + 2. Therefore, three consecutive integers that add up to 300 are 99, 100, and 101.
99 + 100 + 101 = 300
We know our answer is correct because 99 + 100 + 101 equals 300 as displayed above.
Step-by-step explanation:
Answer: The required characteristic polynomial of the given matrix A is 
Step-by-step explanation: We are given to find the characteristic polynomial of the following 3 × 3 matrix A with unknown variable x :
![A=\left[\begin{array}{ccc}0&0&1\\4&-3&4\\-2&0&-3\end{array}\right].](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%5C%5C4%26-3%264%5C%5C-2%260%26-3%5Cend%7Barray%7D%5Cright%5D.)
We know that
for any square matrix M, the characteristic polynomial is given by
where I is an identity matrix of same order as M.
Therefore, the characteristic polynomial of matrix A is
![|A-xI|=0\\\\\\\Rightarrow \left|\left[\begin{array}{ccc}0&0&1\\4&-3&4\\-2&0&-3\end{array}\right]-x\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\right|=0\\\\\\\Rightarrow \left|\left[\begin{array}{ccc}-x&0&1\\4&-3-x&4\\-2&0&-3-x\end{array}\right] \right|=0\\\\\\\Rightarrow -x(3+x)^2+1(0-6-2x)=0\\\\\Rightarrow (x+3)(-3x-x^2-2)=0\\\\\Rightarrow (x+3)(x^2+3x+2)=0\\\\\Rightarrow x^3+6x+11x+6=0.](https://tex.z-dn.net/?f=%7CA-xI%7C%3D0%5C%5C%5C%5C%5C%5C%5CRightarrow%20%5Cleft%7C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%5C%5C4%26-3%264%5C%5C-2%260%26-3%5Cend%7Barray%7D%5Cright%5D-x%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%5Cright%7C%3D0%5C%5C%5C%5C%5C%5C%5CRightarrow%20%5Cleft%7C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-x%260%261%5C%5C4%26-3-x%264%5C%5C-2%260%26-3-x%5Cend%7Barray%7D%5Cright%5D%20%5Cright%7C%3D0%5C%5C%5C%5C%5C%5C%5CRightarrow%20-x%283%2Bx%29%5E2%2B1%280-6-2x%29%3D0%5C%5C%5C%5C%5CRightarrow%20%20%28x%2B3%29%28-3x-x%5E2-2%29%3D0%5C%5C%5C%5C%5CRightarrow%20%28x%2B3%29%28x%5E2%2B3x%2B2%29%3D0%5C%5C%5C%5C%5CRightarrow%20x%5E3%2B6x%2B11x%2B6%3D0.)
Thus, the required characteristic polynomial of the given matrix A is 