Answer:
D. 4
Step-by-step explanation:
The faster you go, the faster you get home (theoretically anyway) and vice versa. So if your speed is doubled, it'll take half the time to get home. But if your speed gets halved, it'll also take double the time to get home.
So, if at 60 mph it takes 1 hour to get home, then if your speed is divided by four to 15 mph, you need to multiply the time by the same number and thus the answer is 4.
Answer:
Answer: $210 profit
Step-by-step explanation:
275-65 =210
Answer:
<h2><em>
Three to the three fifths power.</em></h2>
Step-by-step explanation:
The given expression is
![\sqrt{3\sqrt[5]{3} }](https://tex.z-dn.net/?f=%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%20%7D)
To simplify this expression, we have to use a specific power property which allow us to transform a root into a power with a fractional exponent, the property states:
![\sqrt[n]{x^{m}}=x^{\frac{m}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%7D%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D)
Applying the property, we have:
![\sqrt{3\sqrt[5]{3}}=\sqrt{3(3)^{\frac{1}{5}}}=(3(3)^{\frac{1}{5}})^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%7D%3D%5Csqrt%7B3%283%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%7D%3D%283%283%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
Now, we multiply exponents:

Then, we sum exponents to get the simplest form:
![3^{\frac{1}{2}}3^{\frac{1}{10}}=3^{\frac{1}{2}+\frac{1}{10}} =3^{\frac{10+2}{20}}=3^{\frac{12}{20}} \\\therefore \sqrt{3\sqrt[5]{3}}=3^{\frac{3}{5} }](https://tex.z-dn.net/?f=3%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D3%5E%7B%5Cfrac%7B1%7D%7B10%7D%7D%3D3%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B10%7D%7D%20%3D3%5E%7B%5Cfrac%7B10%2B2%7D%7B20%7D%7D%3D3%5E%7B%5Cfrac%7B12%7D%7B20%7D%7D%20%20%5C%5C%5Ctherefore%20%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%7D%3D3%5E%7B%5Cfrac%7B3%7D%7B5%7D%20%7D)
Therefore, the right answer is <em>three to the three fifths power.</em>
Answer:
150cm³
Step-by-step explanation:
volume =1/2b×bh×h
volume=25×6
=150
hope this helps
please like and Mark as brainliest