Answer:
m= - 1/4
Step-by-step explanation:
The linear equation that has a slope of -7 and crosses the x-axis at (3, 0) is:
y = -7x + 21
<h3>
How to find the linear equation?</h3>
A general linear equation is:
y = a*x +b
Where a is the slope and b is the y-intercept.
The slope must be equal to the limit found in part a, and you say that it is equal to -7, so the slope is -7. And for how is written the problem, I understand that it crosses the x-axis at x = 3.
Then we will have:
y = -7*x + b
Such that, when x = 3, y = 0, then:
0 = -7*3 + b
21 = b
Then the linear equation is y = -7x + 21
If you want to learn more about linear equations:
brainly.com/question/1884491
#SPJ1
Answer:
SUMMARY:
→ Not a Polynomial
→ A Polynomial
→ A Polynomial
→ Not a Polynomial
→ A Polynomial
→ Not a Polynomial
Step-by-step explanation:
The algebraic expressions are said to be the polynomials in one variable which consist of terms in the form
.
Here:
= non-negative integer
= is a real number (also the the coefficient of the term).
Lets check whether the Algebraic Expression are polynomials or not.
Given the expression

If an algebraic expression contains a radical in it then it isn’t a polynomial. In the given algebraic expression contains
, so it is not a polynomial.
Also it contains the term
which can be written as
, meaning this algebraic expression really has a negative exponent in it which is not allowed. Therefore, the expression
is not a polynomial.
Given the expression

This algebraic expression is a polynomial. The degree of a polynomial in one variable is considered to be the largest power in the polynomial. Therefore, the algebraic expression is a polynomial is a polynomial with degree 5.
Given the expression

in a polynomial with a degree 4. Notice, the coefficient of the term can be in radical. No issue!
Given the expression

is not a polynomial because algebraic expression contains a radical in it.
Given the expression

a polynomial with a degree 3. As it does not violate any condition as mentioned above.
Given the expression


Therefore, is not a polynomial because algebraic expression really has a negative exponent in it which is not allowed.
SUMMARY:
→ Not a Polynomial
→ A Polynomial
→ A Polynomial
→ Not a Polynomial
→ A Polynomial
→ Not a Polynomial
Answer:
600
Step-by-step explanation:
anything times 1 is itself