A=43°
B=82°
c=28
1) A+B+C=180°
Replacing A=43° and B=82° in the equation above:
43°+82°+C=180°
125°+C=180°
Solving for C. Subtracting 125° both sides of the equation:
125°+C-125°=180°-125°
C=55° (option B or C)
2) Law of sines
a/sin A=b/sin B=c/sin C
Replacing A=43°, B=82°, C=55°, and c=28 in the equation above:
a/sin 43°=b/sin 82°=28/sin 55°
2.1) a/sin 43°=28/sin 55°
Solving for a. Multiplying both sides of the equation by sin 43°:
sin 43°(a/sin 43°)=sin 43°(28/sin 55°)
a=28 sin 43° / sin 55°
Using the calculator: sin 43°=0.681998360, sin 55°=0.819152044
a=28(0.681998360)/0.819152044
a=23.31185549
Rounded to one decimal place
a=23.3
2.2) b/sin 82°=28/sin 55°
Solving for a. Multiplying both sides of the equation by sin 82°:
sin 82°(b/sin 82°)=sin 82°(28/sin 55°)
b=28 sin 82° / sin 55°
Using the calculator: sin 82°=0.990268069, sin 55°=0.819152044
b=28(0.990268069)/0.819152044
b=33.84903466
Rounded to one decimal place
b=33.8
Answer: Option B) C=55°, b=33.8, a=23.3
It is all the way simplfyed all the way, I hope that that answers your question☻
Answer:
Step-by-step explanation:
The two congruent base angles tell us that this is an isosceles triangle, meaning the triangle has two congruent sides. Therefore, we can set these two expressions equal to each other and solve from there.
15x + 7 = 23x - 17
7 = 8x - 17
8x = 24
x = 3
Side = 15(3) + 7 = 45 + 7 = 52
Hope this helps!