Answer:
95% confidence interval for the true population mean for the amount of soda served is [12.37 , 14.23].
Step-by-step explanation:
We are given that quality control specialist for a restaurant chain takes a random sample of size 13 to check the amount of soda served in the 16 oz. serving size.
The sample mean is 13.30 with a sample standard deviation of 1.54.
Firstly, the pivotal quantity for 95% confidence interval for the true population mean is given by;
P.Q. = ~
where, = sample mean = 13.30
s = sample standard deviation = 1.54
n = sample size = 13
= true population mean
<em>Here for constructing 95% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.</em>
<u>So, 95% confidence interval for the population mean, </u><u> is ;</u>
P(-2.179 < < 2.179) = 0.95 {As the critical value of t at 12 degree of
freedom are -2.179 & 2.179 with P = 2.5%}
P(-2.179 < < 2.179) = 0.95
P( < < ) = 0.95
P( < < ) = 0.95
<u>95% confidence interval for</u> = [ , ]
= [ , ]
= [12.37 , 14.23]
Therefore, 95% confidence interval for the true population mean for the amount of soda served is [12.37 , 14.23].