The initial speed of the bolt is not 58.86 m/s.
Let a be the acceleration of the rocket.
During the 4 sec lift off, the rocket has reached a height of
h = (1/2)*a*t^2
with t=4,
h = (1/2)*a^16
h = 8*a
Its velocity at 4 sec is
v = t*a
v = 4*a
The initial velocity of the bolt is thus 4*a.
During the 6 sec fall, the bolt has the initial velocity V0=-4*a and it drops a total height of h=8*a. From the equation of motion,
h = (1/2)*g*t^2 + V0*t
Substituting h0=8*a, t=6 and V0=-4*a into it,
8*a = (1/2)*g*36 - 4*a*6
Solving for a
a = 5.52 m/s^2
If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Answer:
Temperature : 92.9 F
Internal Energy change: -2.53 Btu/lbm
Explanation:
As
mh1=mh2
h1=h2
In table A-11 through 13E
p2=120Psi, h1= 41.79 Btu/lbm,
u1=41.49
So T1=90.49 F
P2=20Psi
h2=h1= 41.79 Btu/lbm
T2= -2.43F
u2= 38.96 Btu/lbm
T2-T1 = 92.9 F
u2-u1 = -2.53 Btu/lbm
Answer: NO.
Explanation: Oxygen is not a compound. It has only one element in it.
Answer:
The resulting pressure is 3 times the initial pressure.
Explanation:
The equation of state for ideal gases is described below:
(1)
Where:
- Pressure.
- Volume.
- Molar quantity, in moles.
- Ideal gas constant.
- Temperature.
Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:
(2)
If we know that
, then the resulting pressure of the system is:


The resulting pressure is 3 times the initial pressure.