Step-by-step explanation:Updated answer is the second one
Answer:
The measures of the angles at its corners are 
Step-by-step explanation:
see the attached figure to better understand the problem
step 1
Find the measure of angle A
Applying the law of cosines


![cos(A)= [215^{2}+125^{2}-185^{2}]/(2(215)(125))](https://tex.z-dn.net/?f=cos%28A%29%3D%20%5B215%5E%7B2%7D%2B125%5E%7B2%7D-185%5E%7B2%7D%5D%2F%282%28215%29%28125%29%29)


step 2
Find the measure of angle B
Applying the law of cosines


![cos(B)= [215^{2}+185^{2}-125^{2}]/(2(215)(185))](https://tex.z-dn.net/?f=cos%28B%29%3D%20%5B215%5E%7B2%7D%2B185%5E%7B2%7D-125%5E%7B2%7D%5D%2F%282%28215%29%28185%29%29)


step 3
Find the measure of angle C
Applying the law of cosines


![cos(C)= [125^{2}+185^{2}-215^{2}]/(2(125)(185))](https://tex.z-dn.net/?f=cos%28C%29%3D%20%5B125%5E%7B2%7D%2B185%5E%7B2%7D-215%5E%7B2%7D%5D%2F%282%28125%29%28185%29%29)


Answer: 67.27
Step-by-step explanation:
7.1 x 7.1 for the square = 50.41
7.1 divided by 2 = 3.55
3.55 x 4.75= 16.86
Normally here you would divide by 2, but you don’t need two because there is 2 triangles that are the same
Add the 50.41 and the 16.86 and you have your answer!
Answer:the car was traveling at a speed of 80 ft/s when the brakes were first applied.
Step-by-step explanation:
The car braked with a constant deceleration of 16ft/s^2. This is a negative acceleration. Therefore,
a = - 16ft/s^2
While decelerating, the car produced skid marks measuring 200 feet before coming to a stop.
This means that it travelled a distance,
s = 200 feet
We want to determine how fast the car was traveling (in ft/s) when the brakes were first applied. This is the car's initial velocity, u.
Since the car came to a stop, its final velocity, v = 0
Applying Newton's equation of motion,
v^2 = u^2 + 2as
0 = u^2 - 2 × 16 × 200
u^2 = 6400
u = √6400
u = 80 ft/s
(2,5) I think I’m sorry if I’m wrong:/