Answer:
the maximum vertical height the person in the cart can reach is 18.42 m
Explanation:
Given;
mass of the person in cart, m₁ = 45 kg
mass of the cart, m₂ = 43 kg
acceleration due to gravity, g = 9.8 m/s²
final speed of the cart before it goes up the hill, v = 19 m/s
Apply the principle of conservation of energy;

Therefore, the maximum vertical height the person in the cart can reach is 18.42 m
Answer:
<em>The number 0.0217 has 3 significant digits</em>
Explanation:
<u>Significant Digits
</u>
These are digits that contribute to the significance of the number. Some rules apply to discard the non-significant digits like:
- Leading zeros
- Trailing zeros (with exceptions)
Our number is 0.0217 has two leading zeros before the 2 because they only occupy space to indicate the order of magnitude of the number. Only the 2,1,7 are significant digits, thus
The number 0.0217 has 3 significant digits
Answer:
The amount of force applied to his body is 1944.44 N
<em>The chances of the person dying is very high owing to the high impact force with which the person would experience when he or she lands on the asphalt road due to the jump out of the moving car.</em>
Explanation:
We all know that,
F = Ma where,
F = Force
M = weight of the person
a = acceleration or velocity of the moving car
Therefore;
F = { 70 x (100 x 1000) } / [3600]
= [7 000 000] / 3600
= <u>1944.44 N</u>
Answer:

Explanation:
The kinetic energy of a rigid body that travels at a speed v is given by the expression:

The equivalence between mass and energy established by the theory of relativity is given by:

This formula states that the equivalent energy
can be calculated as the mass
multiplied by the speed of light
squared.
Where
is approximately 
Hence:


Therefore, the ratio of the person's relativistic kinetic energy to the person's classical kinetic energy is:
