y-intercept -3
slope 1/2
is sufficient info with which to write an equation for a straight line:
y = mx + b becomes y = (1/2)x - 3.
You should check this by determining whether or not (2,-1) satisfies this equation.
If the equation is 4x+1/3=20, your answer would be x=59/12.
- You would subtract 1/3 from each side. (1/3 - 1/3) (20-1/3)
- Then your new equation would be 4x = 59/3
- You would divide 4 from each side (4/4) (59/3 / 4)
- x = 59/12
Answer: C) y ≥ 3x - 2; 
<u>Step-by-step explanation:</u>
Blue line:
y-intercept (b) = -2
slope (m) is 3 up, 1 right = 3
shading is above
⇒ y ≥ 3x - 2
Yellow line:
y-intercept (b) = 3
slope (m) is 1 up, 2 right = 
shading is below

Problem 1)
AC is only perpendicular to EF if angle ADE is 90 degrees
(angle ADE) + (angle DAE) + (angle AED) = 180
(angle ADE) + (44) + (48) = 180
(angle ADE) + 92 = 180
(angle ADE) + 92 - 92 = 180 - 92
angle ADE = 88
Since angle ADE is actually 88 degrees, we do NOT have a right angle so we do NOT have a right triangle
Triangle AED is acute (all 3 angles are less than 90 degrees)
So because angle ADE is NOT 90 degrees, this means
AC is NOT perpendicular to EF-------------------------------------------------------------
Problem 2)
a)
The center is (2,-3) The center is (h,k) and we can see that h = 2 and k = -3. It might help to write (x-2)^2+(y+3)^2 = 9 into (x-2)^2+(y-(-3))^2 = 3^3 then compare it to (x-h)^2 + (y-k)^2 = r^2
---------------------
b)
The radius is 3 and the diameter is 6From part a), we have (x-2)^2+(y-(-3))^2 = 3^3 matching (x-h)^2 + (y-k)^2 = r^2
where
h = 2
k = -3
r = 3
so, radius = r = 3
diameter = d = 2*r = 2*3 = 6
---------------------
c)
The graph is shown in the image attachment. It is a circle with center point C = (2,-3) and radius r = 3.
Some points on the circle are
A = (2, 0)
B = (5, -3)
D = (2, -6)
E = (-1, -3)
Note how the distance from the center C to some point on the circle, say point B, is 3 units. In other words segment BC = 3.
Hyperbole is the correct answer