Every real number is irrational this is true
Let r, g and b represent red, green and blue.
r+g+b = 74
r=g-1
b=r+g
Again, r+g+b = 74. Let's substitutte r+g for b: r+g+(r+g) = 74.
Next, let's eliminate r. Use r=g-1. Then g-1 + g + g-1 + g = 74
Combining the g terms, 4g - 2 = 74 => 4g = 76 => g = 19
Recall that r=g-1
and
b=r+g
Find r. If r=g-1, and g=19, then r = 19-1=18
Find b: b = r+g = 18+19=37
So there are 37 blue candies, 18 red candies and 19 green candies.
Check: 37+18+19=74 ??? Yes.
Answer:
Value of x is used to consider unknown value. The letter “x” is commonly used in algebra to indicate an unknown value. It is referred to as a “variable” or, in some cases, a “unknown.” In x + 2 = 7, x is a variable. ... A variable need not be “x,” but might be “y,” "w," or any other letter, name, or symbol.
Step-by-step explanation: |x − y| = 1, ok lets play as Alice, my number is y, and the bob number is x.
the condition says that x-y = 1 or x-y = -1.
so, if you know x, then y = 1 +y or y = y - 1. so you have two possibilities.
let's see two cases : first, let's suppose there are no code in the conversation. Then the only way of being shure of your number, is if one of them have the lowest positive number, so the other should have the next one. So if Bob have the number one, Alice knows for shure that she has the 2. Bob knows that she has a 2, but that means he could have a 1 or a 3, but when he sees that Alice is shure about her number, he knows that his number is the 1.
the second case is where the conversation may be a sort of code, saying a phrase x times and changing when x = the number of the other person, in this case, bob will have the 201 and alice the 202.
Answer:
The top option is false.
Step-by-step explanation:
Both segments have a <em>rate</em><em> </em><em>of</em><em> </em><em>change</em><em> </em>[<em>slope</em>] of ⅔. It just that their ratios have unique qualities:

Greatest Common Factor: 2
___ ___
<em>BC</em><em> </em>is at a 4⁄6 slope, and <em>AB</em><em> </em>is at a ⅔ slope. Although their quantities are unique, they have the exact same value.
I am joyous to assist you anytime.