<h2>
Hello!</h2>
The answer is:
The correct option is the first option:

<h2>
Why?</h2>
To write the equation of the line in slope-interception form we need to extract all the information that we need from the graphic.
We must remember that the slope-interception form of the lines is:

Where,
y, is the function
m, is the slope of the line
x, is the variable
b, is the y-axis intercept
We can find the slope using the following formula:

Which is for this case:

As we can see from the graphic, the line is decresing, so the sign of the slope "m" will be negative, so:

We can find the value of "b" seeing where the line intercepts the y-axis.
As we can see it intercept the y-axis at: 
Then, now that we already know the value of "m" and "b", we can write the equation of the line:

So, the correct option is the first option:

Have a nice day!
Answer:
Iron
Step-by-step explanation:
Just learned about this
Answer:
The standard parabola
y² = -18 x +27
Length of Latus rectum = 4 a = 18
Step-by-step explanation:
<u><em>Explanation:-</em></u>
Given focus : (-3 ,0) ,directrix : x=6
Let P(x₁ , y₁) be the point on parabola
PM perpendicular to the the directrix L
SP² = PM²
(x₁ +3)²+(y₁-0)² = 
x₁²+6 x₁ +9 + y₁² = x₁²-12 x₁ +36
y₁² = -18 x₁ +36 -9
y₁² = -18 x₁ +27
The standard parabola
y² = -18 x +27
Length of Latus rectum = 4 a = 4 (18/4) = 18
Answer:
on my screen it sayes its 50938
Step-by-step explanation: