Create two different real-world scenarios—one in which you would use permutations and one in which you would use combinations: I
nclude specific details and an explanation about what makes each situation either a combination or permutation. Provide sample data and calculate the total number of possible permutations and combinations for both scenarios.
Permutation<span> and </span>Combinations<span> are counting techniques used frequently to solve simple probability problems. </span>Permutations<span> refers to the </span>number of<span> unique ways that a set </span>of distinct<span> objects </span>can<span> be arranged (order matters). In contrast, a </span>Combination<span> is a selection </span>of<span> objects from a set </span>of distinct<span>objects without </span>