Answer:
The p-value of the test is 0.1469 > 0.05, which means that there is no reason to believe that the proportion of adults favoring capital punishment today has increased, using a 0.05 level of significance.
Step-by-step explanation:
Suppose that, in the past, 40% of all adults favored capital punishment. Test if the proportion has increased:
At the null hypothesis, we test if the proportion is still of 40%, that is:

At the alternative hypothesis, we test if the proportion has increased, that is, is greater than 40%, so:

The test statistic is:
In which X is the sample mean,
is the value tested at the null hypothesis,
is the standard deviation and n is the size of the sample.
0.4 is tested at the null hypothesis:
This means that 
Random sample of 15 adults, 8 favor capital punishment.
This means that 
Value of the test statistic:



P-value of the test and decision:
The p-value of the test is the probability of finding a sample proportion of 0.5333 or more, which is 1 subtracted by the p-value of z = 1.05.
Looking at the z-table, z = 1.05 has a p-value of 0.8531.
1 - 0.8531 = 0.1469.
The p-value of the test is 0.1469 > 0.05, which means that there is no reason to believe that the proportion of adults favoring capital punishment today has increased, using a 0.05 level of significance.