Moles of H₂ are needed to produce 9.33 moles of NH₃ : 13.995
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
The reaction coefficient in a chemical equation shows the mole ratio of the reactants and products
Reaction for the synthesis of ammonia :
N₂+3H₂⇒2NH₃
moles of NH₃ = 9.33
From equation, mol ratio of H₂ : NH₃ = 3 : 2, so mol H₂ :
If the faucet drops at 5 mL per minute you just have to do the following steps to find out.
5 mL for the dripping rate times 5 for the minutes.
The answer would result being 25mL
Hope this helps! Stay safe!
Crushing a can, breaking glass, cutting paper, boiling water, chopping wood, and mixing water and sand
Answer:
131.5 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
First, we will calculate the standard enthalpy of the reaction (ΔH°).
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)
) - 1 mol × ΔH°f(CaCO₃(s)
)
ΔH° = 1 mol × (-634.9 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1207.6 kJ/mol)
ΔH° = 179.2 kJ
Then, we calculate the standard entropy of the reaction (ΔS°).
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)
) - 1 mol × S°(CaCO₃(s)
)
ΔS° = 1 mol × (38.1 J/mol.K) + 1 mol × (213.8 J/mol.K) - 1 mol × (91.7 J/mol.K)
ΔS° = 160.2 J/K = 0.1602 kJ/K
Finally, we calculate the standard Gibbs free energy of the reaction at T = 25°C = 298 K.
ΔG° = ΔH° - T × ΔS°
ΔG° = 179.2 kJ - 298 K × 0.1602 kJ/K
ΔG° = 131.5 kJ