Answer:
ummmmmmmmmm what's that???
Answer:
Below
Explanation:
2) there are 28 protons in this isotope
The number that is on the bottom of the "stacked pair" tells you how many protons are in this isotope. It is often represented by the variable Z.
3) there are 35 neutrons in this isotope
Subtract the number of protons (28) from the top number
4) there are 28 electrons in the neutral element of Nickel
If you were to look at the period table and find Ni, you would see that its atomic number is 28. This number tells us the amount of protons and electrons there are in that element.
5) 62.9296694 atomic mass units
Just search it up (unless your teacher wants you to calculate it)
6) there are 92 protons in this isotope
Again just look at the Z value to find the proton count
7) there are 146 neutrons in this isotope
Subtract 238 - 92 = 146
8) there are 92 electrons in the neutral element of uranium
Again just look at the periodic table and find U
9) 238.0507882 atomic mass units
10) 12C or carbon 12 is more likely to bond with oxygen that 14c carbon 14
This is because 12C is more abundant at 98.93% than 14C
Hope this helps! Best of luck <3
Answer:
The volume of the sample is 17.4L
Explanation:
The reaction that occurs requires the same amount of CO and NO. As the moles added of both reactants are the same you don't have any limiting reactant. The only thing we need is the reaction where 4 moles of gases (2mol CO + 2mol NO) produce 3 moles of gases (2mol CO2 + 1mol N2). The moles produced are:
0.1800mol + 0.1800mol reactants =
0.3600mol reactant * (3mol products / 4mol reactants) = 0.2700 moles products.
Using Avogadro's law (States the moles of a gas are directly proportional to its pressure under constant temperature and pressure) we can find the volume of the products:
V1n2 = V2n1
<em>Where V is volume and n moles of 1, initial state and 2, final state of the gas</em>
Replacing:
V1 = 23.2L
n2 = 0.2700 moles
V2 = ??
n1 = 0.3600 moles
23.2L*0.2700mol = V2*0.3600moles
17.4L = V2
<h3>The volume of the sample is 17.4L</h3>
Because a copper ion looses electrons, meaning it's negatively charged, and positives and negatives attract.