1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
3 years ago
9

A gene or trait that appears or expresses itself over a recessive trait is called A. a mutation. B. an influential gene. C. a do

minant gene. D. a chromosome.
Chemistry
1 answer:
olya-2409 [2.1K]3 years ago
8 0

Answer:

C.

Explanation:

You might be interested in
An experiment applies heat to a substance and produces a gas that is a new and different substance. Choose the true statement.
sergejj [24]
Im a bit torn here, lets look at the definitions of physical and chemical changes:
physical change changes only the phase/state of a substance, but not what the substance is
chemical change is a chemical reaction where a new substance is formed and energy is given off or absorbed.
(it just started raining and it smells really nice out my window)

clearly, this cannot be just a physical reaction. i think i would be inclined to pick B. but C. could have merit as an answer too. sorry for the ambiguity x
7 0
3 years ago
Consider the following reaction:
iren [92.7K]

Answer:

A. ΔG° = 132.5 kJ

B. ΔG° = 13.69 kJ

C. ΔG° = -58.59 kJ

Explanation:

Let's consider the following reaction.

CaCO₃(s) → CaO(s) + CO₂(g)

We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.

ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)

where,

n: moles

ΔH°f: standard enthalpy of formation

ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))

ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)

ΔH° = 178.3 kJ

We can calculate the standard entropy of the reaction (ΔS°) using the following expression.

ΔS° = ∑np . S°p - ∑nr . S°r

where,

S: standard entropy

ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))

ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)

ΔS° = 160.6 J/K. = 0.1606 kJ/K.

We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.

ΔG° = ΔH° - T.ΔS°

where,

T: absolute temperature

<h3>A. 285 K</h3>

ΔG° = ΔH° - T.ΔS°

ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ

<h3>B. 1025 K</h3>

ΔG° = ΔH° - T.ΔS°

ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ

<h3>C. 1475 K</h3>

ΔG° = ΔH° - T.ΔS°

ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ

5 0
3 years ago
What is the answer of these compound
olganol [36]
BaO, Barium Oxide. 

Na2SO4, Sodium Sulfate.

CuO, Copper (II) Oxide.

P2O5, Diphosphorus Pentoxide.

HNO3, Nitric Acid.

CO32-, Molecular Formula. 

Hope this helps. :)
8 0
2 years ago
Excess magnesium reacts with 165.0 grams of hydrochloric acid in a single displacement reaction.
JulsSmile [24]

Answer:

The volume of hydrogen gas produced will be approximately 50.7 liters under STP.

Explanation:

Relative atomic mass data from a modern periodic table:

  • H: 1.008;
  • Cl: 35.45.

Magnesium is a reactive metal. It reacts with hydrochloric acid to produce

  • Hydrogen gas \rm H_2, and
  • Magnesium chloride, which is a salt.

The chemical equation will be something like

\rm ?\;Mg\;(s) + ?\;HCl \;(aq)\to ?\;H_2 \;(g)+ [\text{Formula of the Salt}],

where the coefficients and the formula of the salt are to be found.

To determine the number of moles of \rm H_2 that will be produced, first find the formula of the salt, magnesium chloride.

Magnesium is a group 2 metal. The oxidation state of magnesium in compounds tends to be +2.

On the other hand, the charge on each chloride ion is -1. Each magnesium ion needs to pair up with two chloride ions for the charge to balance in the salt, magnesium chloride. The formula for the salt will be \rm MgCl_2.

\rm ?\;Mg\;(s) + ?\;HCl\;(aq) \to ?\;H_2 \;(g)+ ?\;MgCl_2\;(aq).

Balance the equation. \rm MgCl_2 contains the largest number of atoms among all species in this reaction. Start by setting its coefficient to 1.

\rm ?\;Mg\;(s) + ?\;HCl\;(aq) \to ?\;H_2 \;(g)+ {\bf 1\;MgCl_2}\;(aq).

The number of \rm Mg and \rm Cl atoms shall be the same on both sides. Therefore

\rm {\bf 1\;Mg}\;(s) + {\bf 2\;HCl}\;(aq) \to ?\;H_2 \;(g)+ {1\;\underset{\wedge}{Mg}\underset{\wedge}{Cl_2}}\;(aq).

The number of \rm H atoms shall also conserve. Hence the equation:

\rm {1\;Mg}\;(s) + {2\;\underset{\wedge}{H}Cl}\;(aq) \to {\bf 1\;H_2 \;(g)}+ {1\;MgCl_2}\;(aq).

How many moles of HCl are available?

M(\rm HCl) = 1.008 + 35.45 = 36.458\;g\cdot mol^{-1}.

\displaystyle n({\rm HCl}) = \frac{m(\text{HCl})}{M(\text{HCl})} = \rm \frac{165.0\;g}{36.458\;g\cdot mol^{-1}} = 4.52576\;mol.

How many moles of Hydrogen gas will be produced?

Refer to the balanced chemical equation, the coefficient in front of \rm HCl is 2 while the coefficient in front of \rm H_2 is 1. In other words, it will take two moles of \rm HCl to produce one mole of \rm H_2. \rm 4.52576\;mol of \rm HCl will produce only one half as much \rm H_2.

Alternatively, consider the ratio between the coefficient in front of \rm H_2 and \rm HCl is:

\displaystyle \frac{n(\text{H}_2)}{n(\text{HCl})} = \frac{1}{2}.

\displaystyle n(\text{H}_2) = n(\text{HCl})\cdot \frac{n(\text{H}_2)}{n(\text{HCl})} = \frac{1}{2}\;n(\text{HCl}) = \rm \frac{1}{2}\times 4.52576\;mol = 2.26288\;mol.

What will be the volume of that many hydrogen gas?

One mole of an ideal gas occupies a volume of 22.4 liters under STP (where the pressure is 1 atm.) On certain textbook where STP is defined as \rm 1.00\times 10^{5}\;Pa, that volume will be 22.7 liters.

V(\text{H}_2) = \rm 2.26288\;mol\times 22.4\;L\cdot mol^{-1} = 50.69\; L, or

V(\text{H}_2) = \rm 2.26288\;mol\times 22.7\;L\cdot mol^{-1} = 51.37\; L.

The value "165.0 grams" from the question comes with four significant figures. Keep more significant figures than that in calculations. Round the final result to four significant figures.

5 0
3 years ago
What is the SI base unit for length?
sp2606 [1]

The SI base unit for length is meter.

In order to make smaller measurements, you can use the centi-, milli-, micro-, etc. prefixes.

When you want to reference larger measurements, you can use the kilo-, mega-, giga- and prefixes such as those.

5 0
3 years ago
Other questions:
  • An engineer designing a new type of engine needs a liquid that can be heated and cooled quickly with as little exchange of energ
    7·1 answer
  • Is air a conductor or insulator
    13·2 answers
  • Which of the following is correct abbreviated si unit describing the amount of a substance
    14·2 answers
  • ______________ is the process of translating a message received into understandable language or symbols.
    12·1 answer
  • ILL GIVE BRAINLIST!!!!!!
    11·2 answers
  • What is Hess‘s law please help
    7·1 answer
  • Question 5: Causes of Molecular Shape (3 points)
    7·1 answer
  • Which are characteristics of natural selection? Select three options.
    8·1 answer
  • ⚠️HURRY PLEASE⚠️FAST IM TIMED⚠️
    5·2 answers
  • The valency of calcium is2 ? what does it mean​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!