If you want faster replys or even replys at all, you need to give all the info.
Answer:DNA is shown to be the genetic material in bacteria and some phages.
DNA is shown to be present in mitochondria, chloroplasts and nucleus, where genetic function is performed
Specific genes can be isolated and spliced into bacterial DNA, which can be inserted into a bacterial cell, and then its genetic expression is monitored.
DNA and RNA are found to be the only macromolecules in eukaryotes that consist of a set of subunits which can combine in unique sequence
Explanation:
1. Lipds is another macro molecule with different subnits of fatty acids and glycerol,therefore the option ( DNA is found to be the only macro molecule in Eukaryotas that has different sub units) is WRONG.
2 The correlation of action and absorption spectra varies with different organisms DNA. e..g in viral cells there is a wide difference between the absorption and action spectra, that is no correlation, while some bacterial cells showed correlations. The option(For DNA, content in various cell types action and absorption spectra of ultraviolet light are correlated IS WRONG.
Answer:
he Pacific temperate rain forests
Explanation:
that is the anwser
Answer:
The answer is letter A. automatic
Explanation:
When Surita sees a man walking around the shopping mall in December and notices that he is very robust, has a long white beard, and wears thin rimmed eyeglasses, she immediately assumes that he is a Santa Claus actor taking a break; she is engaging in a(n) __AUTOMATIC_______ process.
Answer:
What does cellular respiration due?
<h2>Cellular respiration releases stored energy in glucose molecules and converts it into a form of energy that can be used by cells.</h2>
Explanation:
<h2>What are the 7 steps of cellular respiration in order?</h2>
<h2>Overview of the steps of cellular respiration. Glycolysis. Six-carbon glucose is converted into two pyruvates (three carbons each). ATP and NADH are made.</h2>
...
<h2>Glycolysis. ... </h2><h2>Pyruvate oxidation. ... </h2><h2>Citric acid cycle. ... </h2><h2>Oxidative phosphorylation</h2>
<h2>Answer</h2>
<h2> Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules[1] or nutrients into adenosine triphosphate (ATP), and then release waste products.[2] The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen,[3] are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent providing most of the chemical energy is molecular oxygen (O2).[1] The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transport of molecules across cell membranes.</h2>