Explanation:
High-energy electrons are transported from the chlorophyll to other molecules by electron carriers beginning with pheophytin, P0 (a form of chlorophyll), then A1 phylloquinone etc.
The chloroplast is an organelle attached to the membrane found in plants. This comprises many plasma membrane invaginations called the thylakoid membrane. It contains chlorophyll pigments, called granum in rows, while the organelle's internal areas are called the lumen. Water fills the granum and the stroma is created.
Further Explanation:
<em>During the light reaction: </em>
- Photosystem II (PSII) contains pigments which consume light energy. This energy is exchanged between pigments until it enters the reaction core and is moved to P680; this transfers an electron to a higher level of energy where it then travels to a molecule of acceptors.
- For those removed from photosystem II, water supplies the chlorophyll in plant cell with substitute electrons. Additionally, water (H2O) divided into H+ and OH-by light during photolysis acts as a source of oxygen along with functioning as a reducer.
- The electron moves down the electron transport chain via several electron carriers
- The e- is delivered (to PS I) where it has a continuous loss of energy. Such energy drives the drainage of H+ from the stroma to the thykaloid, which results in a gradient creation. The H+ pass down their curve, passing into the stroma by ATP synthase.
- ATP synthase converts ADP and Pi to the ATP molecule, which stores energy.
- The electron enters Photosystem I where it heads to P700 pigments. It's. This consumes light energy, transfers the electron to a higher energy level, and moves it on to an acceptor electron. This leaves room for another electron which is then replaced by a photosystem II electron.
- In the ETC the NADP molecule is reduced to NADPH by supplying H+ ions. NADP and NADPH are vital to the Calvin cycle, in which monosaccharides or glucose-like sugars are produced after several molecules have been modified.
Learn more about photosynthesis at brainly.com/question/4216541
Learn more about cellular life at brainly.com/question/11259903
#LearnWithBrainly
The answer is yes or the statement is true.
Answer:
Uno de los progenitores es heterocigoto para color naranja (Nn) y el otro parental es homocigoto recesivo para gris (nn). Al haber una cruza entre un homocigoto recesivo y un heterocigoto, la 50% de la progenie expresa color naranja (Nn), mientras que el otro 50% expresa color gris (nn).
Explanation:
<u>Datos disponibles:</u>
- Cruce entre peces naranjas y peces grises
- 50% de la F1 son peces grises
- Naranja dominante sobre gris
Podemos nombrar el alelo dominante para color naranja <em>N</em>, y al alelo recesivo para color gris <em>n</em>.
Para que en un cruce entre dos fenotipos distintos, el 50% de la primer camada exprese uno de estos fenotipos, entonces uno de los parentales debe ser heterocigoto, mientras que el otro parental debe ser homocigoto recesivo. De esta forma 50% de la primera generación expresara uno de los fenotipos, mientras que el otro 50% expresará el otro fenotipo.
Supongamos que uno de los parentales lleva el genotipo <em>Nn</em>, y el otro parental es <em>nn</em>.
Cruce:
Parental) Nn x nn
Gametas) N n n n
Fenotipos) Naranja Gris
Cuadro de Punnett) N n
n Nn nn
n Nn nn
F1) 2/4 = 1/2 = 50% de la progenie tendrá genotipo heterocigoto, Nn
2/4 = 1/2 = 50% de la progenie tendrá genotipo homocigota recesivo,
nn
50% de la progenie será color naranja (Nn)
50% de la progenie será color gris (nn)
Answer:
Fibrous
Explanation:
Proteins are assembled according to their functions. Fibrous proteins usually provide protection and support to cells. They are made up of polypeptides that have elongated shape and assembles in large cables or threads. These proteins are differentiated from globular proteins by their globular form and repeated units of amino acids.
For example the fibrous proteins involved in horns, hair and nails is alpha-keratin. Elastin found in skin and ligament is also a fibrous protein. Collagen includes collagen fibrils that have tensile strength of steel is also a fibrous protein found in cartilages and bones.
Answer: check below
Carbon dating is accurate only for objects less than 60,000 years old. Use the idea of half-life to explain this limitation. (1 point) Hint Carbon-13’s half life is 6,000 years
Explanation:
HOpe helps
:3