1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liono4ka [1.6K]
2 years ago
15

Write a polynomial with rational coefficients having roots 3,3+i and 3-i

Mathematics
1 answer:
Elena L [17]2 years ago
3 0
Part 1: If the roots of a polynomial are a, b, and c, then the factors can be written in the form (x - a), (x - b), and (x - c). In this case, we have (x - 3), (x - [3 + i]), and (x - [3 - i]). The three factors are (x - 3)(x - 3 - i)(x - 3 + i).

Part 2: The two factors with complex terms are (x - 3 - i)(x - 3 + i), and multiplying these terms as a difference of two squares can give:
(x - 3)^2 - i^2 = x^2 - 6x + 9 - (-1) = x^2 - 6x + 10

Part 3: We now multiply (x^2 - 6x + 10) by the remaining factor of (x - 3). This results in the cubic expression:
(x^2 - 6x + 10)(x - 3)
= x^3 - 3x^2 - 6x^2 + 18x + 10x - 30
= x^3 - 9x^2 + 28x - 30
You might be interested in
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
11 months ago
3. The ratio of blue marbles to white
SSSSS [86.1K]

Answer:

C 40

Step-by-step explanation:

1 blue : 2 white

multiply both sides of the proportion by 20 to reach 20 blue marbles

20 blue: 40 white

7 0
3 years ago
Read 2 more answers
The sum of 86,68, and 38 is 192. What do you also know about the sum
Andru [333]
The sum of these numbers is an even number and it is prime. 
Therefore it is not an odd number and is not a composite number.

8 0
3 years ago
What is the product of (2p+7)(3p+4p-3)
Alex

Answer:

The answer is C=6p3 + 29p2 + 22p – 21

Step-by-step explanation:

To calculate the product, we need to multiply each member of each multiplier:

(2p + 7)(3p2 + 4p – 3) = 2p · 3p² + 2p · 4p + 2p · -3 + 7 ·3p² + 7 · 4p + 7 · -3

                                   =    6p³     +     8p²    -     6p    + 21p²   +  28p   -     21

                                   = 6p³ + 8p² + 21p² + 28p - 6p -21

                                   = 6p³ + 29p² + 22p - 21

Therefore, the product of (2p + 7)(3p2 + 4p – 3) is 6p³ + 29p² + 22p -21

3 0
2 years ago
Read 2 more answers
SIMPLE INTEREST
cupoosta [38]
The answer would be 5 years. I=PxRxT.
3 0
3 years ago
Read 2 more answers
Other questions:
  • Find the area of the composite shape
    11·1 answer
  • How do you divide mix numbers
    6·1 answer
  • Convert 84 degrees to radian measure
    11·2 answers
  • -9=3x+6 what is the value of x?
    11·2 answers
  • I mainly need help with #10, thank you!
    6·1 answer
  • Estimate 0.00001377 as the product of a single digit number times a power of 10.
    9·1 answer
  • What is<br> V7<br> in simplest radical form?<br> Enter your answer in the box.
    12·1 answer
  • Which graph represents the relationship between the x-values and the y-values in the equation y = 3x + 2?
    9·1 answer
  • 16/10 = n + 2 /5 solve the proportion.​
    11·2 answers
  • What's the answer guys?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!