Answer:
31-3n
Step-by-step explanation:
d=-3
a1=28
an= 28+(n-1)(-3)=28-3n+3
an=31-3n
Answer:
1011.05
Step-by-step explanation:
Let's use 3 as an example.
The angle of depression is the one directly under the ballon.
You also know that the 53 degree angle is part of a 90 degree angle.
so the angle inside the triangle directly under the balloon is 37 degrees.
You know the angle and you know the side from the balloon to the ground is 1680. This is the hypotenuse of the triangle.
So which trig function could you use to determine how high the balloon is from the ground?
SOH CAH TOA
cos 37 = a/1680
a = 1341.71
Answer:
There are a few different answers, because distance doesn't translate to speed.
Speed: 40 mph = 58.66142 fps
Distance: 40 miles = 211,200 feet
Hope that this helps!
Answer:
y = -3x - 6
Step-by-step explanation:
Slope intercept form:
y = mx +b
6x + 2y = -12
2y = -6x - 12

Answer:
(i) 
(ii) 
(iii) ![\displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Be%5Ex%5Bxln%282x%29%20%2B%201%5D%7D%7Bx%7D)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Exponential Differentiation
Logarithmic Differentiation
Step-by-step explanation:
(i)
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Product Rule:
![\displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%283x%5E2%20-%20x%29%27ln%282x%20%2B%201%29%20%2B%20%283x%5E2%20-%20x%29%5Bln%282x%20%2B%201%29%5D%27)
- Basic Power Rule/Logarithmic Differentiation [Chain Rule]:

- Basic Power Rule:

- Simplify [Factor]:

(ii)
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Quotient Rule:

- Basic Power Rule/Logarithmic Differentiation:

- Rewrite:

- Simplify:

(iii)
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Product Rule:
![\displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%28e%5Ex%29%27ln%282x%29%20%2B%20e%5Ex%5Bln%282x%29%5D%27)
- Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:

- Basic Power Rule:

- Simplify:

- Rewrite:

- Factor:
![\displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Be%5Ex%5Bxln%282x%29%20%2B%201%5D%7D%7Bx%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e