1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
4 years ago
13

The angle turns through 1/6 of the circle. What is the measure of the

Mathematics
1 answer:
s344n2d4d5 [400]4 years ago
7 0

Answer:

60

Step-by-step explanation:

A circle is 360 degrees.  If we rotate through 1/6 of the circle

360 *1/6 = 60

We rotate through 60 degrees

You might be interested in
What is the equation for the nth term of the arithmetic sequence.<br> 28, 25, 22, 19, ....
natka813 [3]

Answer:

31-3n

Step-by-step explanation:

d=-3

a1=28

an= 28+(n-1)(-3)=28-3n+3

an=31-3n

4 0
3 years ago
I NEED HELP WITH THIS PRE CALC WORKSHEET, DUE TOMORROW!
nalin [4]

Answer:

1011.05

Step-by-step explanation:

Let's use 3 as an example.

The angle of depression is the one directly under the ballon.

You also know that the 53 degree angle is part of a 90 degree angle.

so the angle inside the triangle directly under the balloon is 37 degrees.

You know the angle and you know the side from the balloon to the ground is 1680.  This is the hypotenuse of the triangle.

So which trig function could you use to determine how high the balloon is from the ground?

SOH CAH TOA

cos 37 = a/1680

a = 1341.71

6 0
3 years ago
How many feet is 40 miles per hour
astra-53 [7]

Answer:

There are a few different answers, because distance doesn't translate to speed.

Speed: 40 mph = 58.66142 fps

Distance: 40 miles = 211,200 feet

Hope that this helps!

5 0
3 years ago
Write 6x+2y=-12 in slope intercept form​
Elena L [17]

Answer:

y = -3x - 6

Step-by-step explanation:

Slope intercept form:

y = mx +b

6x + 2y = -12

       2y = -6x - 12

\frac{2y}{2}=\frac{-6x}{2} - \frac{12}{2}\\\\ y = -3x - 6

4 0
3 years ago
Read 2 more answers
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Help me out question #9
    13·2 answers
  • What is the area of the shaded sector?
    10·2 answers
  • A dress pattern calls for 118 yards of fabric for the top and 258 yards for the skirt. Mia has 312 yards of fabric. Does she hav
    14·1 answer
  • Semicircles and quarter circles are types of arc lengths. Recall that an arc is simply part of a circle. We learned about the de
    7·1 answer
  • The length of a triangle is x and its width is 2x. what is the area if the length and width are each increased by 1?
    5·2 answers
  • Use the quadratic formula to solve for the roots in the following equation.
    10·1 answer
  • Write the prime factorization of 6. Use exponents when appropriate and order the factors from least to greatest (for example, 2
    5·1 answer
  • Solve for x in the equation 3x + 8 = x - 12.​
    7·2 answers
  • What is the length of the side HG?​
    12·1 answer
  • Helpppppppppppppppppppppppppppppppppppp
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!