First, take three off it, because that will form the whole-number part:
3.92 = 3 + 0.92
Next, read off the place value of the last digit. The 2 is in the 'hundredths' column, which means that 0.92 = 92/100:
3.92 = 3 + 92/100
Finally, simplify 92/100 by dividing top and bottom by 4 to get 23/25. Then, shove it all together:
3.92 = 3 23/25
Answer:
d. 1
Step-by-step explanation:
The base for this "exponential" function is sufficiently close to 1 that the function looks linear. The value corresponding to x=0 seems to be 1.00. Rounded to tenths, it is 1.0.
Answer:
I belive it is (40x10)+(40x7)+(3x10)+(3x7)
Step-by-step explanation:
<em>Answer</em><em>:</em><em> </em><em>3</em><em>7</em>
<em>Step</em><em> </em><em>by</em><em> </em><em>step</em><em> </em><em>explanation</em><em>:</em>
<em>y</em><em>+</em><em>2</em><em>9</em><em>+</em><em>4</em><em>0</em><em>+</em><em>2</em><em>y</em><em>=</em><em>1</em><em>8</em><em>0</em><em>°</em><em>(</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>angle</em><em> </em><em>in</em><em> </em><em>stra</em><em>ight</em><em> </em><em>line</em><em>)</em>
<em>or</em><em>,</em><em> </em><em>y</em><em>+</em><em>2</em><em>y</em><em>+</em><em>2</em><em>9</em><em>+</em><em>4</em><em>0</em><em>=</em><em>1</em><em>8</em><em>0</em><em>°</em>
<em>or</em><em>,</em><em>3</em><em>y</em><em>+</em><em>6</em><em>9</em><em>=</em><em>1</em><em>8</em><em>0</em>
<em>or</em><em>,</em><em>3</em><em>y</em><em>=</em><em>1</em><em>8</em><em>0</em><em>-</em><em>6</em><em>9</em>
<em>or</em><em>,</em><em>3</em><em>y</em><em>=</em><em>1</em><em>1</em><em>1</em>
<em>or</em><em>,</em><em>y</em><em>=</em><em>1</em><em>1</em><em>1</em><em>/</em><em>3</em>
<em>y</em><em>=</em><em>3</em><em>7</em>
<em>hope</em><em> </em><em>it</em><em> </em><em>helps</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em>
Between the two persons presented above, Julie had ridden farther. This is because from the routes she had taken, she would be covering greater distance compared to Kyle. Julie still ad to ride from the complex to school.