Given:
In triangle GHI, h = 300 inches, G=30° and H=29º.
To find:
The length of i.
Solution:
We have, G=30° and H=29º.
Using angle sum property, we get





According to Law of sines,

Using Law of sines, we get



Multiply both sides by 0.8572.



Therefore, the length of i is about 530 inches.
Present value of annuity PV = P(1 - (1 + r/t)^-nt) / (r/t)
where: p is the monthly payment, r is the APR = 14.12% = 0.1412, t is the number of payments in one year = 12, n is the number of years = 2.
1,120.87 = P(1 - (1 + 0.1412/12)^(-2 x 12)) / (0.1412 / 12)
0.1412(1120.87) = 12P(1 - (1 + 0.1412/12)^-24)
P = 0.1412(1120.87) / 12(1 - (1 + 0.1412/12)^-24) = $53.88
Minimum monthly payment = 3.15% of 1120.87(1 + 0.1412/12) = 0.0315 x 1120.87(1 + 0.1412/12) = $35.72
Therefore, his first payment will be greater than the minimum payment by 53.88 - 35.72 = $18.16
Answer:
Null hypothesis is: U1 - U2 ≤ 0
Alternative hypothesis is U1 - U2 > 0
Step-by-step explanation:
The question involves a comparison of the two types of training given to the salespeople. The requirement is to set up the hypothesis that type A training leads to higher mean weakly sales compared to type B training.
Let U1 = mean sales by type A trainees
Let U2 = mean sales by type B trainees
Therefore, the null hypothesis (H0) is: U1 - U2 ≤ 0
This implies that type A training does not result in higher mean weekly sales than type B training.
The alternative hypothesis (H1) is: U1 - U2 > 0
This implies that type A training indeed results in higher mean weekly sales than type B training.