10 mph i jus got it right on the test
Answer: e. P/2
Explanation:
For ideal gases, we have the relation:
P*V = n*R*T
where:
n = number of mols
R = Gas constant
T = temperature
V = volume
P = pressure.
We know that for sample A, we have n moles, a temperature T and a volume V, then the pressure of this sample will be:
Pa = (n*R*T)/V.
For sample B, we have:
n/2 moles, temperature T/2 and a volume V/2, then the pressure will be:
Pb = (n/2)*R*(T/2)*(2/V) = (n*R*T/V)*(2/4)
and:
(n*R*T/V) = Pa
Then we can replace it and we get:
Pb = (n*R*T/V)*(2/4) = Pa*(2/4) = Pa*(1/2) = Pa/2.
Then the correct option is e.
Answer:
A:
Explanation:
The earth rotates on it's axis every 24 hours not revolves.
Imagine rotation as a top spinning on the ground. revolving means if you tied a string to the top and spun it around your body in a circle. (hope this helps:)
Answer:
10%
Explanation:
Efficiency = work done / energy used
e = (10 m × 100 N) / (10,000 J)
e = 0.1
The efficiency is 0.1, or 10%.
Answer:
a. 340.13 m/s b. 680.26 m/s c. our wavelength doubles
Explanation:
a. speed of wave, v = fλ were f = frequency = 301 Hz and λ = wavelength = 1.13 m.
v = fλ = 301 Hz × 1.13 m = 340.13 m/s
b. If we double the frequency then f = 2 × 301 Hz = 602 Hz
v = fλ = 602 Hz × 1.13 m = 680.26 m/s
c. If the speed of the wave is still 340.13 m/s, if we cut the frequency in half, then frequency now equals f = 301 Hz/2 = 150.5 Hz.
Since v = fλ,
λ = v/f = 340.13 m/s ÷ 150.5 Hz = 2.26 m.
Since our initial wavelength λ₀ = 1.13 m,
λ/λ₀ = 2.26 m/1.13 m = 2.
So, λ = 2λ₀ our wavelength doubles