Given:
m = 0.240 kg = 240 g, the mass of O₂
V = 3.10 L = 3.10 x 10⁻³ m³, the volume
Because the molar mass of oxygen is 16, the number of moles of O₂ is
n = (240 g)/(2*16 g/mol) = 7.5 mol
As an ideal gas,
p*V = nRT
or
V = (nRT)/p
where R = 8.314 J/(mol-K)
When
p = 0.910 atm = (0.910 atm) * (101325Pa/atm) = 92205.75 Pa
T = 27 °C = (27 + 273) K = 300 K
then the volume is

V = (0.2029 m³)*(10³ L/m³) = 202.9 L
Answer: 203 liters
Answer:
Meter, Gram and Liter.
Explanation:
In the metric system, the standard units for the below are;
Length - Meter
Mass - Gram
Volume - Liter.
F - False.
The law of conservation of momentum states that the total momentum is conserved.
The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.
Answer:
K = m g (A - A2)
Explanation:
In a block spring system the total energy is the sum of the potential energy plus the kinetic energy, for maximum elongation all the energy is potential
Em = U₀ = m g A
For when the system is at an ele
Elongation A2 less than A, energy has two parts
Em = K + U₂
K = Em –U₂
We substitute
K = m g A - m gA2
K = m g (A - A2)